精英家教网 > 初中数学 > 题目详情
已知a2+b2=12,ab=-3,则(a+b)2的值是

A.6
B.18
C.3
D.12
相关习题

科目:初中数学 来源:同步题 题型:单选题

已知a2+b2=12,ab=-3,则(a+b)2的值是
[     ]
A.6
B.18
C.3
D.12

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知a2+b2=25,且ab=12,则a+b的值是(  )
A.
37
B.±
37
C.7D.±7

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:已知x是实数,求y=
x2+4
+
(12-x)2+9
的最小值.要解决这个问题需现判断出0<x<12,继而联想到构造以边长为2+3和12为边的矩形,找出等于
x2+22
(12-x)2+32
的线段,再比较
x2+22
(12-x)2+32
和矩形对角线的大小.
解:构造矩形ABCD,使AB=5,AD=12.在AB上截取AM=3,做矩形AMND.设点P是MN上一点MP=x,则PN=12-x,
PB=
x2+22
PD=
(12-x)2+32
BD=
122+52
=13
∵PB+PD≥BD=13
∴y的最小值是13.

(1)我们把上述求最值问题的方法叫做构图法.请仿造上述方法求y=
1+x2
+
25+(8-x)2
的最小值.
探索创新:
(2)已知a,b,c,d是正实数且a+b+c+d=1,试运用构图法求
a2+b2
+
b2+c2
+
c2+d2
+
d2+a2
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+数学公式=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+数学公式=0.②
将①代入②,整理得4c2+2c-2ab+数学公式=0.∴ab=2c2+c+数学公式
由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+数学公式=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+数学公式≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+数学公式=0.∴t1=t2=数学公式,即a=b=数学公式.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=数学公式+t,b=数学公式-t.①
∵a2+b2+6c+数学公式=0,∴(a+b)2-2ab+6c+数学公式=0.②
将①代入②,得(1-2c)2-2数学公式+6c+数学公式=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=数学公式,b=数学公式.a=b=数学公式,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=数学公式+t,y=数学公式-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一元二次方程》(05)(解析版) 题型:解答题

(2002•荆门)阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
将①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
将①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=,b=.a=b=,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=+t,y=-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《有理数》(05)(解析版) 题型:解答题

(2002•荆门)阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
将①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
将①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=,b=.a=b=,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=+t,y=-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源:2002年湖北省荆门市中考数学试卷(解析版) 题型:解答题

(2002•荆门)阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
将①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
将①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=,b=.a=b=,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=+t,y=-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列范例,按要求解答问题.
例:已知实数a、b、c满足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是关于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的两个实数根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
将c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、设a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
将①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
将t、c的值同时代入①,得a=
3
2
,b=
3
2
.a=b=
3
2
,c=-1.
以上解法1是构造一元二次方程解决问题.若两实数x、y满足x+y=m,xy=n,则x、y是关于t的一元二次方程t2-mt+n=0的两个实数根,然后利用判别式求解.
以上解法2是采用均值换元解决问题.若实数x、y满足x+y=m,则可设x=
m
2
+t,y=
m
2
-t.一些问题根据条件,若合理运用这种换元技巧,则能使问题顺利解决.
下面给出两个问题,解答其中任意一题:
(1)用另一种方法解答范例中的问题.
(2)选用范例中的一种方法解答下列问题:
已知实数a、b、c满足a+b+c=6,a2+b2+c2=12,求证:a=b=c.

查看答案和解析>>


同步练习册答案