精英家教网 > 初中数学 > 题目详情
如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为


A.
B.
C.
D.
相关习题

科目:初中数学 来源: 题型:解答题

如图,等边△ABC的边长为数学公式,以BC边所在直线为x轴,BC边上的高线AO所在的直线为y轴建立平面直角坐标系.
(1)求过A、B、C三点的抛物线的解析式.
(2)如图,设⊙P是△ABC的内切圆,分别切AB、AC于E、F点,求阴影部分的面积.
(3)点D为y轴上一动点,当以D点为圆心,3为半径的⊙D与直线AB、AC都相切时,试判断⊙D与(2)中⊙P的位置关系,并简要说明理由.
(4)若(2)中⊙P的大小不变,圆心P设y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时a的取值范围.

查看答案和解析>>

科目:初中数学 来源:2001年山东省济南市中考数学试卷(解析版) 题型:解答题

如图,等边△ABC的边长为,以BC边所在直线为x轴,BC边上的高线AO所在的直线为y轴建立平面直角坐标系.
(1)求过A、B、C三点的抛物线的解析式.
(2)如图,设⊙P是△ABC的内切圆,分别切AB、AC于E、F点,求阴影部分的面积.
(3)点D为y轴上一动点,当以D点为圆心,3为半径的⊙D与直线AB、AC都相切时,试判断⊙D与(2)中⊙P的位置关系,并简要说明理由.
(4)若(2)中⊙P的大小不变,圆心P设y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为(  )
A、
3
2
B、
2
3
C、
1
2
D、
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ=
12
BC,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为(  )
A、2
7
B、4
C、3
7
D、1+2
7

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,等边△ABC的边长为3,P为BC上一点,且∠APD=80°.在AC上取一点D,使AD=AP,则∠DPC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交线段AB于点F,在线段AC上取一点P,使PE=EB,连接FP.
(1)请直接写出图中与线段EF相等的所有线段.(不再另外添加辅助线)
(2)点E满足什么条件时,四边形EFPC是菱形,并说明理由.
(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据E与此时平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为(  )

查看答案和解析>>


同步练习册答案