精英家教网 > 初中数学 > 题目详情
用正三角形和正六边形镶嵌, 若每一个顶点周围有m 个正三角形、n  个正六边形, 则m,n 满足的关系式是

A.2m+3n=12    
B.m+n=8    
C.2m+n=6    
D.m+2n=6
相关习题

科目:初中数学 来源:2012年人教版七年级下第七章三角形第三节多边形及其内角和2练习卷(解析版) 题型:选择题

用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是(   )

    A.2m+3n=12     B.m+n=8     C.2m+n=6     D.m+2n=6

 

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

用正三角形和正六边形镶嵌, 若每一个顶点周围有m 个正三角形、n  个正六边形, 则m,n 满足的关系式是
[     ]
A.2m+3n=12    
B.m+n=8    
C.2m+n=6    
D.m+2n=6

查看答案和解析>>

科目:初中数学 来源: 题型:

8、用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是(  )

查看答案和解析>>

科目:初中数学 来源:2012年人教版七年级下第七章三角形第四节课题学习镶嵌练习卷(解析版) 题型:选择题

用正三角形和正六边形镶嵌,若每一个顶点周围有个正三角形、 个正六边形,则满足的关系式是(   )

    A.     B.     C.     D.

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是(  )
A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是


  1. A.
    2m+3n=12
  2. B.
    m+n=8
  3. C.
    2m+n=6
  4. D.
    m+2n=6

查看答案和解析>>

科目:初中数学 来源:中学学习一本通 数学 七年级下册 人教课标 题型:008

判断题.(正确的用T,错误的用F)

若只用正三角形和正六边形镶嵌,在它的每一个顶点周围一定有两个正三角形和两个正六边形

(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>

科目:初中数学 来源:河北省期中题 题型:解答题

(1)如图1,是某市公园周围街巷的示意图,A点表示1街与2巷的十字路口,B点表示3街与5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A点到B点的一条路径,那么,你能同样的方法写出由A点到B点尽可能近的其他两条路径吗?

(2)从正三角形、正四边形、正五边形、正六边形、正八边形、正十边形、正十二边形中任选两种正多边形镶嵌,请全部写出这两种正多边形.并从其中任选一种探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.
(3)如图2所示,已知AB∥CD,分别探索下列四个图形中∠P(均为小于平角的角)与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.
(4)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.如图3给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.请你按照上述方法将图4中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n边形内角和的计算公式.

查看答案和解析>>


同步练习册答案