精英家教网 > 高中数学 > 题目详情
直线l1∥l2,在l1上取3点,l2上取2点,由这5点能确定的平面有

A.9个
B.6个
C.3个
D.1个
相关习题

科目:高中数学 来源:同步题 题型:单选题

直线l1∥l2,在l1上取3点,l2上取2点,由这5点能确定的平面有

[     ]

A.9个
B.6个
C.3个
D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:013

已知AB是异面直线l1l2的公垂线段,且AB=3,异面直线l1l230°角,在直线l1上取AP=6,则点P到直线l2的距离等于( )

  A6              B

  C6           D

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

已知AB是异面直线l1l2的公垂线段,且AB=3,异面直线l1l230°角,在直线l1上取AP=6,则点P到直线l2的距离等于( )

  A6              B

  C6           D

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市丰台区高三(上)期末数学试卷(文科)(解析版) 题型:解答题

设直线l1:y=kx,l2:y=-kx,圆P是圆心在x轴的正半轴上,半径为3的圆.
(Ⅰ)当k=时,圆P恰与两直线l1、l2相切,试求圆P的方程;
(Ⅱ)设直线l1与圆P交于A、B,l2与圆P交于C、D.
(1)当k=时,求四边形ABDC的面积;
(2)当k∈(0,)时,求证四边形ABDC的对角线交点位置与k的取值无关.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,若直线l1:y=kx+1沿x轴向左平移1个单位,再沿y轴向上平移
3
个单位,回到原来的位置,直线l2过(4,0)且与l1垂直,以O为圆心的圆O与直线l2相切
(1)求圆O方程;
(2)圆O与x轴交于A,B两点,P为圆内一动点,P关于x轴的对称点为Q,且|PQ|2,|PO|2,|OA|2成等差数列,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l1和l2相交于点M且l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲线段C是哪类圆锥曲线的一部分?并建立适当的坐标系,求曲线段C所在的圆锥曲线的标准方程;
(2)在(1)所建的坐标系下,已知点P(m,n)在曲线段C上,直线l:mx+ny=1,求直线l被圆x2+y2=1截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建师大附中高二(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,直线l1和l2相交于点M且l1⊥l2,点N∈l1.以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,,|AN|=3,且|BN|=6.
(1)曲线段C是哪类圆锥曲线的一部分?并建立适当的坐标系,求曲线段C所在的圆锥曲线的标准方程;
(2)在(1)所建的坐标系下,已知点P(m,n)在曲线段C上,直线l:mx+ny=1,求直线l被圆x2+y2=1截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足0<a<2,直线l1:ax-2y-2a+4=0和l2:2x+a2y-2a2-4=0与两坐标轴围成一个四边形.
(1)求证:无论实数a如何变化,直线l1、l2必过定点.
(2)画出直线l1和l2在平面坐标系上的大致位置.
(3)求实数a取何值时,所围成的四边形面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为
12
,且椭圆E上一点到两个焦点距离之和为4;l1,l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N. 
(1)求椭圆E的方程;  
(2)求l1的斜率k的取值范围;
(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足0<a<2,直线l1:ax-2y-2a+4=0和l2:2x+a2y-2a2-4=0与两坐标轴围成一个四边形.
(1)求证:无论实数a如何变化,直线l1、l2必过定点.
(2)画出直线l1和l2在平面坐标系上的大致位置.
(3)求实数a取何值时,所围成的四边形面积最小?

查看答案和解析>>


同步练习册答案