精英家教网 > 高中数学 > 题目详情
在f(m,n)中,m,n,f(m,n)∈N*,且对任意的m,n都有(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;
(3)f(m+1,1)=2f(m,1)。
给出下面三个结论:①f(1,5)=9,②f(5,1)=16;③f(5,6)=26,其中正确的个数为

A.0
B.1
C.2
D.3
相关习题

科目:高中数学 来源:陕西省模拟题 题型:单选题

在f(m,n)中,m,n,f(m,n)∈N*,且对任意的m,n都有(1)f(1,1)=1;(2)f(m,n+1)=f(m,n)+2;
(3)f(m+1,1)=2f(m,1)。
给出下面三个结论:①f(1,5)=9,②f(5,1)=16;③f(5,6)=26,其中正确的个数为
[     ]
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是正整数,在f(x)=(1+x)m+(1+x)n中的x系数为7.
(1)求f(x)的展开式,x2的系数的最小值a;
(2)当f(x)的展开式中的x2系数为a时,求x3的系数β.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是[
1
2
,1]
上的平缓函数;
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平缓函数,则实数m的取值范围是[-
3
3
1
2
]

④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是
①③④
①③④
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m,n是正整数,在f(x)=(1+x)m+(1+x)n中的x系数为7.
(1)求f(x)的展开式,x2的系数的最小值a;
(2)当f(x)的展开式中的x2系数为a时,求x3的系数β.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是[
1
2
,1]
上的平缓函数;
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平缓函数,则实数m的取值范围是[-
3
3
1
2
]

④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是______(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m,n是正整数,在f(x)=(1+x)m+(1+x)n中的x系数为7.
(1)求f(x)的展开式,x2的系数的最小值a;
(2)当f(x)的展开式中的x2系数为a时,求x3的系数β.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省达州市高二(下)期末数学试卷(理科)(解析版) 题型:填空题

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是上的平缓函数;
③若f(x)=x3-mx2-3m2x+1是[0,]上的平缓函数,则实数m的取值范围是
④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是    (多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省赤壁市南鄂高中高二(上)期末摸底数学试卷(解析版) 题型:解答题

已知m,n是正整数,在f(x)=(1+x)m+(1+x)n中的x系数为7.
(1)求f(x)的展开式,x2的系数的最小值a;
(2)当f(x)的展开式中的x2系数为a时,求x3的系数β.

查看答案和解析>>

科目:高中数学 来源:2010年重庆市重点高中高考数学模拟试卷9(解析版) 题型:解答题

已知m=,n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m•n,且f(x)的对称中心到f(x)对称轴的最近距离不小于
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A、B、C的对边,
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大小;
(2)设f(x)=cos(ωx-
B
2
)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>


同步练习册答案