精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,若对所有的n≥2,都有a1a2…an=n2,则a3+a5等于

A、
B、
C、
D、
相关习题

科目:高中数学 来源:同步题 题型:单选题

在数列{an}中,a1=1,若对所有的n≥2,都有a1a2…an=n2,则a3+a5等于
[     ]
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,如果对任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ为常数),则称数列{an}为比等差数列,λ称为比公差.现给出以下命题,其中所有真命题的序号是
①④
①④

①若数列{Fn}满足F1=1,F2=1,Fn=Fn-1+Fn-2(n≥3),则该数列不是比等差数列;
②若数列{an}满足an=(n-1)•2n-1,则数列{an}是比等差数列,且比公差λ=2;
③等差数列是常数列是成为比等差数列的充分必要条件;
(文)④数列{an}满足:an+1=an2+2an,a1=2,则此数列的通项为an=32n-1-1,且{an}不是比等差数列;
(理)④数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,则此数列的通项为an=
n•3n
3n-1
,且{an}不是比等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网将数列{an}  中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}  中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a66=
2
5
.请解答以下问题:
(1)求数列{bn}  的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
1000
 , 
1
100
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将数列{an} 中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn} 中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
数学公式.请解答以下问题:
(1)求数列{bn} 的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式数学公式数学公式上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:成都一模 题型:解答题

在数列{an}中,a1=2,a2=4,且当n≥2时,a
 2n
=an-1an+1
,n∈N*
(I)求数列{an}的通项公式an
(II)若bn=(2n-1)an,求数列{bn}的前n项和Sn
(III)是否存在正整数对(m,n),使等式
 2n
-man+4m=0
成立?若存在,求出所有符合条件的(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将数列{an}中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如下数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.请解答以下问题:
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)求上表中第k(k∈N*)行所有项的和S(k);
(Ⅲ)若关于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年四川省成都市高考数学一模试卷(文科)(解析版) 题型:解答题

在数列{an}中,a1=2,a2=4,且当n≥2时,a,n∈N*
(I)求数列{an}的通项公式an
(II)若bn=(2n-1)an,求数列{bn}的前n项和Sn
(III)是否存在正整数对(m,n),使等式成立?若存在,求出所有符合条件的(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十三校高三(下)第二次联考数学试卷(文科)(解析版) 题型:解答题

将数列{an}  中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}  中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
.请解答以下问题:
(1)求数列{bn}  的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式上有解,求正整数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市十三校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

将数列{an}  中的所有项按第一排三项,以下每一行比上一行多一项的规则排成如数表:记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知:
①在数列{bn}  中,b1=1,对于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的数按从左到右的顺序均构成公比为q(q>0)的等比数列;
.请解答以下问题:
(1)求数列{bn}  的通项公式;
(2)求上表中第k(k∈N*)行所有项的和S(k);
(3)若关于x的不等式上有解,求正整数k的取值范围.

查看答案和解析>>


同步练习册答案