精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=3且对于任意大于1的正整数n,点(an,an-1)在直线x-y-6=0上,则a3-a5+a7的值为

A.27
B.6
C.81
D.9
相关习题

科目:高中数学 来源:同步题 题型:单选题

在数列{an}中,已知a1=3且对于任意大于1的正整数n,点(an,an-1)在直线x-y-6=0上,则a3-a5+a7的值为
[     ]
A.27
B.6
C.81
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an
1
b3b4
+
1
b4b5
+…+
1
bnbn+1
<m
对于任意的n∈N*,且n≥3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an
1
b3b4
+
1
b4b5
+…+
1
bnbn+1
<m
对于任意的n∈N*,且n≥3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省揭阳一中、潮州金山中学高三(上)联合摸底数学试卷(文科)(解析版) 题型:解答题

在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an对于任意的n∈N*,且n≥3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年四川省南充一中高三(下)6月适应性考试数学试卷(文科)(解析版) 题型:解答题

在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an对于任意的n∈N*,且n≥3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年湖南省高考数学压轴卷(文科)(解析版) 题型:解答题

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年山东省东营市高三一轮复习数学试卷(理科)(解析版) 题型:解答题

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:高考数学最后冲刺必读题解析30讲(30)(解析版) 题型:解答题

已知在数列{an}中,a1=t,a2=t2(t>0且t≠1).是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)证明数列{an+1-an}是等比数列,并求数列{an}的通项公式;
(2)记,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2008的n的最小值;
(3)当t=2时,是否存在指数函数g(x),使得对于任意的正整数n有成立?若存在,求出满足条件的一个g(x);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正整数数列{an}中,a1=3,且对于任意大于1的整数n,点(
an
an-1
)
总在直线x-y-
3
=0
上,则
lim
n→+∞
an
(n+1)2
=(  )

查看答案和解析>>

科目:高中数学 来源:2007-2008学年重庆八中高三(下)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知正整数数列{an}中,a1=3,且对于任意大于1的整数n,点总在直线上,则=( )
A.0
B.1
C.2
D.3

查看答案和解析>>


同步练习册答案