精英家教网 > 高中数学 > 题目详情
设x,y为正数,且x+y=1,则使≤a恒成立的a的最小值是

A.
B.
C.2
D.2
相关习题

科目:高中数学 来源:同步题 题型:单选题

设x,y为正数,且x+y=1,则使≤a恒成立的a的最小值是
[     ]
A.
B.
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

xy为正数,且x+y=1,则使a恒成立的a的最小值是

A.                         B.                            C.2                           D.2

查看答案和解析>>

科目:高中数学 来源:成都一模 题型:解答题

已知定义在(-1,1)上的函数f (x)满足f(
1
2
)=1
,且对x,y∈(-1,1)时,有f(x)-f(y)=f(
x-y
1-xy
)

(I)判断f(x)在(-1,1)上的奇偶性,并证明之;
(II)令x1=
1
2
xn+1=
2xn
1+
x2n
,求数列{f(xn)}的通项公式;
(III)设Tn为数列{
1
f(xn)
}
的前n项和,问是否存在正整数m,使得对任意的n∈N*,有Tn
m-4
3
成立?若存在,求出m的最小值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:2006年四川省成都市高考数学一模试卷(理科)(解析版) 题型:解答题

已知定义在(-1,1)上的函数f (x)满足,且对x,y∈(-1,1)时,有
(I)判断f(x)在(-1,1)上的奇偶性,并证明之;
(II)令,求数列{f(xn)}的通项公式;
(III)设Tn为数列的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年福建省厦门市普通中学高中毕业班质量检查数学(文科)试题 题型:044

已知定义在(-1,1)上的函数f(x)满足f=1,且对xy∈(-1,1)时,有f(x)-f(y)=

(1)判断f(x)在(-1,1)上的奇偶性,并证明之;

(2)令x1xn+1=,求数列{f(xn)}的通项公式;

(3)设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有Tn成立?若存在,求出m的最小值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源:茂名市一中2007届高三第二次调研考试试卷、数学卷(文科) 题型:044

已知定义在(-1,1)上的函数f(x)满足,且对x,y∈(-1,1)时,有(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并加以证明;

(Ⅱ)令,求数列{f(x)}的通项公式;

(Ⅲ)设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
0(x≤0)
n[x-(n-1)]+f(n-1)(n-1<x≤n,n∈N*)
数列{an}满足an=f(n)(n∈N*
(1)求数列{an}的通项公式;
(2)设x轴、直线x=a与函数y=f(x)的图象所围成的封闭图形的面积为S(a)(a≥0),求S(n)-S(n-1)(n∈N*);
(3)在集合M={N|N=2k,k∈Z,且1000≤k<1500}中,是否存在正整数N,使得不等式an-1005>S(n)-S(n-1)对一切n>N恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:松江区模拟 题型:解答题

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

科目:高中数学 来源:2006年上海市八校高三联考数学试卷(松江二中、青浦、七宝、育才、市二、行知、位育)(解析版) 题型:解答题

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>


同步练习册答案