科目:高中数学 来源: 题型:
xn+2 | xn-2 |
科目:高中数学 来源: 题型:
科目:高中数学 来源: 题型:
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n),其中为正实数.
(Ⅰ)用表示xn+1;
(Ⅱ)若a1=4,记an=lg,证明数列{}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
科目:高中数学 来源: 题型:
已知函数 f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0,n的最小值为n0,且满足m0-n0 = 4.
(1)求m0,n0的值以及函数f (x)的解析式;
(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?
(3)若对任意x1,x2∈ [a, m0](x1≠x2),都有成立,求a的最小值.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
科目:高中数学 来源:不详 题型:解答题
科目:高中数学 来源:不详 题型:解答题
科目:高中数学 来源: 题型:
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(nN *),其中x1为正实数.
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,记a4 =lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.
科目:高中数学 来源: 题型:
(Ⅰ)求x1、x2和xn的表达式;
(Ⅱ)求f(x)的表达式,并写出其定义域;
(Ⅲ)证明:y=f(x)的图象与y=x的图象没有横坐标大于1的交点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com