精英家教网 > 高中数学 > 题目详情
设x,y∈R且x2+y2≤1,则点(x,y)在区域内的概率是


A.
B.
C.
D.

相关习题

科目:高中数学 来源: 题型:

设x,y∈R且x2+y2≤1,则点(x,y)在区域
-1≤x+y≤1
-1≤x-y≤1
内的概率是(  )
A、
1
4
B、
2
π
C、
3
π
D、
1
8

查看答案和解析>>

科目:高中数学 来源:2011年山西省太原五中高考数学模拟试卷(理科)(解析版) 题型:选择题

设x,y∈R且x2+y2≤1,则点(x,y)在区域内的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设x,y∈R且x2+y2≤1,则点(x,y)在区域数学公式内的概率是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:0104 模拟题 题型:单选题

设x,y∈R且x2+y2≤1,则点(x,y)在区域内的概率是
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:填空题

设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为(    )。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函数y=g(x)的零点至少有一个在原点右侧,求实数a的范围.
(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在点M处的切线平行于直线AB,则称函数f(x)=存在“中值相依切线”.
试问:函数G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源:陕西省模拟题 题型:解答题

已知函数f(x)=lnx-ax2+(a-1)x(a∈R且a≠0),
(1)求函数f(x)的单调区间;
(2)记函数y=F(x)的图象为曲线C。设点A(x1,y1),B(x2,y2)是曲线C上的不同两点。如果在曲线C上存在点M(x0,y0),使得:①;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”。试问:函数f(x)是否存在“中值相依切线”,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天津)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+(a-1)x
(a∈R且a≠0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ) 记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点,如果在曲线C上存在点M(x0,y0),使得:①x0=
x1+x2
2
;②曲线C在M处的切线平行于直线AB,则称函数F(x)存在“中值相依切线”.
试问:函数f(x)是否存在“中值相依切线”,请说明理由.

查看答案和解析>>


同步练习册答案