精英家教网 > 高中数学 > 题目详情
正项数列{an}成等比数列,a1+a2=3,a3+a4=12,则a5+a6的值是

A.-24
B.21
C.24
D.48
相关习题

科目:高中数学 来源:0105 模拟题 题型:单选题

正项数列{an}成等比数列,a1+a2=3,a3+a4=12,则a5+a6的值是
[     ]
A.-24
B.21
C.24
D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的前n项和为Sn,已知数学公式
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,记Sn=a1+a2+…+an,已知a2=2S1+1,a3=2S2+1.

(1)求数列{an}的公比q和首项a1的值;

(2)若常数P使得对一切正整数n都有an+1=PSn+1成立,求P的值;

(3)(理)求.

查看答案和解析>>

科目:高中数学 来源:2013年广东省汕尾市高考数学二模试卷(理科)(解析版) 题型:解答题

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市十三校高三第一次联考数学试卷(理科)(解析版) 题型:解答题

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}是递增数列,前n项和为Sn,且a1,a2,a5成等比数列,S5=a32
(1)求{an}的通项公式.
(2)求证:对于任意的正整数m,l,数列am,am+l,am+2l都不可能为等比数列.
(3)若对于任意给定的正整数m,都存在正整数l,使数列am,am+l,am+kl为等比数列,求正常数k的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b3=a3+b2=7.
(1)求{an},{bn}的通项公式;
(2)记cn=an-2010,n∈N*,An为数列{cn}的前n项和,当n为多少时An取得最大值或最小值?
(3)(理)是否存在正数K,使得(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥K
2n+1
对一切n∈N*均成立,若存在,求出K的最大值,若不存在,说明理由.
(4)(文)求数列{
an
bn
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn(n∈N*),点(an,Sn)在直线y=2x-3n上,
(1)若数列{an+c}成等比数列,求常数c的值;
(2)数列{an}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
(3)若bn=
1
3
an
+1,请求出一个满足条件的指数函数g(x),使得对于任意的正整数n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以证明.(其中为连加号,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}前n项和为Sn,且a1=1,S6=28S3,各项均为正数的等差数列{bn}的前n项和为Tn且T3=15.
(1)求数列{an}的通项公式和b2
(2)若a1+b1,a2+b2,a3+b3成等比数列,求Tn
(3)在(2)的条件下证明
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为An,a1=1,an+1=2An+1(n≥1)
(Ⅰ)求{an}的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Bn,且B3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Bn的表达式;
(III)若数列{cn}中cn-1=(
Bnn
-3)an
(n≥2),求数列{cn}的前n项和Sn的表达式.

查看答案和解析>>


同步练习册答案