精英家教网 > 高中数学 > 题目详情
命题“若函数f(x)=logax(a>0,a≠1),在其定义域内是减函数,则loga2<0”的逆否命题

A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
相关习题

科目:高中数学 来源:广东省高考真题 题型:单选题

命题“若函数f(x)=logax(a>0,a≠1),在其定义域内是减函数,则loga2<0”的逆否命题
[     ]
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

3、命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是(  )

查看答案和解析>>

科目:高中数学 来源:广东 题型:单选题

命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是(  )
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
B.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内不是减函数
C.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数
D.若loga2<0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=logax(0<a≠1)的反函数y=f-1(x),给出关于f(x)与f-1(x)的四个命题:其中正确命题的序号是
①②③
①②③

①两个函数必有相同的单调性;
②当a>1时,两个函数的图象没有交点;
③若两个函数的图象有交点,交点一定在y=x上;
④两个函数图象有交点的充分不必要条件为0<a<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数y=logax(0<a≠1)的反函数y=f-1(x),给出关于f(x)与f-1(x)的四个命题:其中正确命题的序号是______.
①两个函数必有相同的单调性;
②当a>1时,两个函数的图象没有交点;
③若两个函数的图象有交点,交点一定在y=x上;
④两个函数图象有交点的充分不必要条件为0<a<1.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市渝中区巴蜀中学高高一(上)期中数学试卷(解析版) 题型:填空题

已知函数y=logax(0<a≠1)的反函数y=f-1(x),给出关于f(x)与f-1(x)的四个命题:其中正确命题的序号是   
①两个函数必有相同的单调性;
②当a>1时,两个函数的图象没有交点;
③若两个函数的图象有交点,交点一定在y=x上;
④两个函数图象有交点的充分不必要条件为0<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数y=logax(0<a≠1)的反函数y=f-1(x),给出关于f(x)与f-1(x)的四个命题:其中正确命题的序号是________.
①两个函数必有相同的单调性;
②当a>1时,两个函数的图象没有交点;
③若两个函数的图象有交点,交点一定在y=x上;
④两个函数图象有交点的充分不必要条件为0<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知函数f(x)=logax(0<a<1)对下列命题:①若0<x<1,则f(x)>0②若x>1,则0<f(x)<1③若f(x1)>f(x2),则x1<x2④对任意正数x,y都有f(x•y)=f(x)+f(y)其中正确的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax(0<a<1),对于下列命题:
①若x>1,则f(x)<0;      
②若0<x<1,则f(x)>0;
③f(x1)>f(x2),则x1>x2;     
④f(xy)=f(x)+f(y).
其中正确的命题的序号是
①②④
①②④
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①函数y=
x-1
x+1
图象的对称中心是(1,1);
②“x>2是x2-3x+2>0”的充分不必要条件;
③对任意两实数m,n,定义定点“*”如下:m*n=
m  若m≤n
n  若m>n
,则函数f(x)=log
1
2
(3x-2)*log2x
的值域为(-∞,0];
④若函数f(x)=
(3a-1)x+4a(x<1)
logax      (x≥1)
对任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,则实数a的取值范围是(-
1
7
,1],
其中正确命题的序号为
②③
②③

查看答案和解析>>


同步练习册答案