精英家教网 > 高中数学 > 题目详情
数列{an}中a1=1,a5=13,an+2+an=2an+1;数列{bn}中,b2=6,b3=3,bn+2bn=b2n+1,在直角坐标平面内,已知点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn)…,则向量的坐标为

A.(3015,8[(1005-1])
B.(3012,[(1005-1])
C.(3015,[(2010-1])
D.(3018,[(2010-1])
相关习题

科目:高中数学 来源:0108 模拟题 题型:单选题

数列{an}中a1=1,a5=13,an+2+an=2an+1;数列{bn}中,b2=6,b3=3,bn+2bn=b2n+1,在直角坐标平面内,已知点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn)…,则向量的坐标为
[     ]
A.(3015,8[(1005-1])
B.(3012,[(1005-1])
C.(3015,[(2010-1])
D.(3018,[(2010-1])

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中a1=1,a5=13,an2+an=2an+1;数列{bn}中,b2=6,b3=3,bn2bn=b2n+1,在直角坐标平面内,已知点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn),…,则向量+…+的坐标为(      )

A.                      B.

C.                      D.

查看答案和解析>>

科目:高中数学 来源:2011届高考数学第一轮复习测试题9 题型:013

数列{an}中a1=1,a5=13,an+2+an=2an+1;数列{bn}中,b2=6,b3=3,bn+2bn=b,在直角坐标平面内,已知点列P1(a1,b1),P2(a2,b2),P3(a3,b3),…,Pn(an,bn)…,则向量+…+P2009P2010的坐标为

[  ]
A.

(3015,8[()1005-1])

B.

(3012),8[()1005-1]

C.

(3015,8[()2010-1])

D.

(3018,8[()2010-1])

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为    (    )

A.(3×1006,-4[1-()1006])                   B.(3×1004,-8[1-()1004])

C.(3×1002,-4[1-()1002])                   D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为(    )

A.(3×1006,-4[1-()1006])         B.(3×1004,-8[1-()1004])

C.(3×1 002,-4[1-()1002])         D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=
1
3
,an=(-1)n-2an-1 (n≥2),则a5等于(  )
A、-
16
3
B、-
29
3
C、-
8
3
D、
8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=
1
3
,an=(-1)n•2an-1(n≥2),则a5等于
16
3
16
3

查看答案和解析>>


同步练习册答案