精英家教网 > 高中数学 > 题目详情
如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有


A.24种
B.18种
C.16种
D.12种
相关习题

科目:高中数学 来源: 题型:

5、如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有
12
种.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:11.1 分类加法计数原理与分步乘法计数原理1(理科)(解析版) 题型:解答题

如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有     种.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:11.1 分类加法计数原理与分步乘法计数原理2(理科)(解析版) 题型:选择题

如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有( )

A.24种
B.18种
C.16种
D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有 ________种.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:单选题

如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有
[     ]
A.24种
B.18种
C.16种
D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的几何体,是由棱长为2的正方体ABCD-A1B1C1D1截去一个角后所得的几何体.
(1)试画出该几何体的三视图;(主视图投影面平行平面DCC1D1,主视方向如图所示.请将三张视图按规定位置画在答题纸的相应虚线框内)
(2)若截面△MNH是边长为2的正三角形,求该几何体的体积V.

查看答案和解析>>

科目:高中数学 来源:2012年上海市黄浦区、嘉定区高考数学二模试卷(文科)(解析版) 题型:解答题

如图所示的几何体,是由棱长为2的正方体ABCD-A1B1C1D1截去一个角后所得的几何体.
(1)试画出该几何体的三视图;(主视图投影面平行平面DCC1D1,主视方向如图所示.请将三张视图按规定位置画在答题纸的相应虚线框内)
(2)若截面△MNH是边长为2的正三角形,求该几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
精英家教网
(1)求证:AC⊥BD;

(2)求二面角A-BD-C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA⊥平面ABC,AB⊥AC,AB=AC,AE=2.
精英家教网
(1)求证:AC⊥BD;
(2)求三棱锥E-BCD的体积.

查看答案和解析>>


同步练习册答案