精英家教网 > 高中数学 > 题目详情
首项为1,且公比|q|≠1的等比数列的第11项等于这个数列的前n项之积,则n=

A.2
B.3
C.4
D.5
相关习题

科目:高中数学 来源:专项题 题型:单选题

首项为1,且公比|q|≠1的等比数列的第11项等于这个数列的前n项之积,则n=
[     ]
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

首项为1的无穷等比数列{an}的各项之和为S,Sn表示该数列的前n项之和,且(Sn-aS)=q(q为公比),则实数a的取值范围为(    )

A.{a|≤a<3且a≠1}                  B.{a|<a<3}

C.{a|≤a≤3}                           D.{a|≤a≤3且a≠1}

 

查看答案和解析>>

科目:高中数学 来源: 题型:

12、设等比数列{an}的首项为a1,公比为q,且q>0,q≠1.
(1)若a1=qm,m∈Z,且m≥-1,求证:数列{an}中任意不同的两项之积仍为数列{an}中的项;
(2)若数列{an}中任意不同的两项之积仍为数列{an}中的项,求证:存在整数m,且m≥-1,使得a1=qm

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项a1=1,前n项和为Sn,公比q=
λ
1+λ
(λ≠-1且λ≠0).
(1)证明:Sn=(1+λ)-λan
(2)设函数f(x)满足f(1)=
1
6
f(x)+f(1-x)=
1
2
,设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)
,求Tn关于n的表达式及
lim
n→∞
Tn
n
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{an}满足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定实数t的值,使得数列{bn}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;等差数列{bn}满足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ) 若对任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求实数λ的取值范围;
(Ⅲ)对每个正整数k,在ak和a k+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的首项为a,公比q>0且q≠1,前n项和为Sn
(Ⅰ)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,命题甲:Sn,(Sn+1+1),Sn+2三数构成等差数列. 命题乙:Sn+1,(Sn+2+1),Sn+3三数构成等差数列.求证:对于同一个正整数n,命题甲与命题乙不能同时为真命题.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年甘肃省高三百题集理科数学试卷(解析版)(一) 题型:选择题

设等比数列{an}的首项为a1,公比为q,则“a1<0,且0<q<1”是“对于任意n∈N*都有an+1>an”的(    )            (    )

A.充分不必要条件       B.必要不充分条件

C.充分比要条件     D.既不充分又不必要条件

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的首项为a,公比q>0且q≠1,前n项和为Sn
(Ⅰ)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,命题甲:Sn,(Sn+1+1),Sn+2三数构成等差数列. 命题乙:Sn+1,(Sn+2+1),Sn+3三数构成等差数列.求证:对于同一个正整数n,命题甲与命题乙不能同时为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{an}满足2n2-(t+bn)n+数学公式bn=0(t∈R,n∈N*).
(1)求数列{an}的通项公式;
(2)试确定实数t的值,使得数列{bn}为等差数列.

查看答案和解析>>


同步练习册答案