精英家教网 > 高中数学 > 题目详情
不等式的解集是

A、(-3,2)
B、(2,+∞)
C、(-∞,-3)∪(2,+∞)
D、(-∞,-2)∪(3,+∞)
相关习题

科目:高中数学 来源:高考真题 题型:单选题

不等式的解集是
[     ]
A、(-3,2)
B、(2,+∞)
C、(-∞,-3)∪(2,+∞)
D、(-∞,-2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+bx+6<0的解集为{x|2<x<3},则a-b值是(  )
A、-4B、6C、10D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高一(上)期中数学试卷(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州中学高一(上)期中数学试卷(解析版) 题型:解答题

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、不等式|2-x|≤1的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
1
3-x
≥1
的解集是(  )
A、(∞,2]
B、(3,+∞)
C、[2,3)
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

3、不等式|x-1|+|x-2|≥3的解集是(  )

查看答案和解析>>


同步练习册答案