精英家教网 > 高中数学 > 题目详情
已知的导函数为f′(x),则f′(i)(i为虚数单位)=

A.-1-2i
B.-2-2i
C.-2+2i
D.2-2i
相关习题

科目:高中数学 来源:专项题 题型:单选题

已知的导函数为f′(x),则f′(i)(i为虚数单位)=
[     ]
A.-1-2i
B.-2-2i
C.-2+2i
D.2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x+1
x2
的导函数为f′(x),则f′(i)=(i为虚数单位)(  )
A、-1-2iB、-2-2i
C、-2+2iD、2-2i

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
2x+1
x2
的导函数为f′(x),则f′(i)=(i为虚数单位)(  )
A.-1-2iB.-2-2iC.-2+2iD.2-2i

查看答案和解析>>

科目:高中数学 来源:2007年湖南省祁阳四中高三理科数学模拟试题 题型:044

如果f(x)在某个区间I内满足:

对任意的,则称f(x)在I上为下凸函数;已知函数

(Ⅰ)证明:当a>0时,f(x)在(0,+∞)上为下凸函数;

(Ⅱ)若f(x)的导函数,且时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中数学 来源:江苏 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中数学 来源:江苏高考真题 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)分别是f(x)和g(x)的导函数,若f′(x)·g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间上单调性一致,
(1)设a>0,若f(x)和g(x)在区间[-1,+∞)上单调性一致,求b的取值范围;
(2)设a<0且b≠0,若f(x)和g(x)在以a,b为端点的区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中数学 来源:江苏高考真题 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致,
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省扬州中学高三(上)开学数学试卷(解析版) 题型:解答题

已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致
(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;
(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.

查看答案和解析>>


同步练习册答案