精英家教网 > 高中数学 > 题目详情
已知曲线C1方程为(x≥0,y≥0),圆C2方程为(x-3)2+y2=1,斜率为k(k>0)的直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,,则直线AB的斜率为


A.
B.
C.1
D.
相关习题

科目:高中数学 来源:专项题 题型:单选题

已知曲线C1方程为(x≥0,y≥0),圆C2方程为(x-3)2+y2=1,斜率为k(k>0)的直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,,则直线AB的斜率为
[     ]
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数),则两条曲线的交点是
(0,1)和(-2,0)
(0,1)和(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知曲线C1数学公式(θ为参数)和曲线C2=:x2+y2-2数学公式x+2y+3=0義于直线l1对称,直线l2过原点且与l1的夹角为30°,则直线l2的方程为


  1. A.
    y=数学公式x
  2. B.
    x=0或y=数学公式x
  3. C.
    y=数学公式x
  4. D.
    x=0或y=数学公式x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C1的极坐标方程为ρcos(θ-
π
4
)=1
,M,N分别为C1在直角坐标系中与x轴,y轴的交点.曲线C2的参数方程为
x=
t
-
1
t
y=4-(t+
1
t
)
(t为参数,且t>0),P为M,N的中点.
(1)将C1,C2化为普通方程;
(2)求直线OP(O为坐标原点)被曲线C2所截得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C1的极坐标方程为ρcos(θ-
π
4
)=1
,M,N分别为C1在直角坐标系中与x轴,y轴的交点.曲线C2的参数方程为
x=
t
-
1
t
y=4-(t+
1
t
)
(t为参数,且t>0),P为M,N的中点,求过OP(O为坐标原点)的直线与曲线C2所围成的封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1的圆心在坐标原点O,且恰好与直线l1x-y-2
2
=0
相切.
(Ⅰ)求圆的标准方程;
(Ⅱ)设点A(x0,y0)为圆上任意一点,AN⊥x轴于N,若动点Q满足
OQ
=m
OA
+n
ON
,(其中m+n=1,m,n≠0,m为常数),试求动点Q的轨迹方程C2
(Ⅲ)在(Ⅱ)的结论下,当m=
3
2
时,得到曲线C,问是否存在与l1垂直的一条直线l与曲线C交于B、D两点,且∠BOD为钝角,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(Ⅰ)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程.
(Ⅱ)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(1,0),定直线l:x=5,动点M(x,y)
(1)若M到点A的距离与M到直线l的距离之比为
5
5
,试求M的轨迹曲线C1的方程;
(2)若曲线C2是以C1的焦点为顶点,且以C1的顶点为焦点,试求曲线C2的方程;
(3)是否存在过点F(
5
,0)的直线m,使其与曲线C2交得弦|PQ|长度为8呢?若存在,则求出直线m的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点在直角坐标系的原点,极轴与x轴的非负半轴重合.曲线C1的极坐标方程为ρsin2θ=2cosθ,曲线C2的参数方程为
x=2+tcosα
y=tsinα
(t为参数).
(1)求曲线C1的直角坐标方程及α=
π
3
时曲线C2的普通方程;
(2)设E(2,0),曲线C1与C2交于点M、N,若ME=2NE,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的一个焦点为(0,
cn
)(n≥2)
,且c1=6,一条渐近线方程为y=
2
x
,其中{an}是以4为首项的正数数列,记Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求数列{cn}的通项公式;
(2)数列{cn}的前n项和为Sn,求
lim
n→∞
S
2
n
Tn

(3)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
1
3
+loga(2x+1)(a>0,a≠1)
对一切自然数n(n∈N*)恒成立,求实数x的取值范围.

查看答案和解析>>


同步练习册答案