精英家教网 > 高中数学 > 题目详情
椭圆的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是

A.3x+2y-4=0
B.4x+6y-7=0
C.3x-2y-2=0
D.4x-6y-1=0
相关习题

科目:高中数学 来源:2012-2013学年河南省安阳二中高三(上)期中数学试卷(理科)(解析版) 题型:选择题

椭圆的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是( )
A.3x+2y-4=0
B.4x+6y-7=0
C.3x-2y-2=0
D.4x-6y-1=0

查看答案和解析>>

科目:高中数学 来源:2011年山东省潍坊市高考模拟数学试卷(理科)(解析版) 题型:选择题

椭圆的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是( )
A.3x+2y-4=0
B.4x+6y-7=0
C.3x-2y-2=0
D.4x-6y-1=0

查看答案和解析>>

科目:高中数学 来源:2011年山东省潍坊市高考数学一模试卷(文科)(解析版) 题型:选择题

椭圆的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是( )
A.3x+2y-4=0
B.4x+6y-7=0
C.3x-2y-2=0
D.4x-6y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

椭圆数学公式的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是


  1. A.
    3x+2y-4=0
  2. B.
    4x+6y-7=0
  3. C.
    3x-2y-2=0
  4. D.
    4x-6y-1=0

查看答案和解析>>

科目:高中数学 来源:山东省模拟题 题型:单选题

椭圆的离心率为e,点(1,e)是圆x2+y2-4x-4y+4=0的一条弦的中点,则此弦所在直线的方程是
[     ]
A.3x+2y-4=0
B.4x+6y-7=0
C.3x-2y-2=0
D.4x-6y-1=0

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省温州二中高三(上)期末数学试卷(解析版) 题型:选择题

设椭圆的离心率为e,右焦点F(c,0),方程ax2+bx-c=0的两个实数根分别为x1,x2,则点P(x1,x2)( )
A.必在圆x2+y2=1内
B.必在圆x2+y2=1上
C.必在圆x2+y2=1外
D.与x2+y2=1的关系与e有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆数学公式的离心率为数学公式分别是左、右焦点,过F1的直线与圆(x+c)2+(y+2)2=1相切,且与椭圆E交于A、B两点.
(1)当数学公式时,求椭圆E的方程;
(2)若直线AB的倾斜角为锐角,当c变化时,求证:AB的中点在一定直线上.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山西省高三上学期期中考试理科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.

(1)求椭圆C的方程;

(2)求的取值范围;

(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江桐乡高级中学高二第二学期期中考试文科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,两焦点之间的距离为4.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过椭圆的右顶点作直线交抛物线于A、B两点,

(1)求证:OA⊥OB;

(2)设OA、OB分别与椭圆相交于点D、E,过原点O作直线DE的垂线OM,垂足为M,证明|OM|为定值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

查看答案和解析>>


同步练习册答案