精英家教网 > 高中数学 > 题目详情
若平面α、β的法向量分别为,b=(-1,2,6),则 

A.α∥β    
B.α与β相交但不垂直
C.α⊥β    
D.α∥β或α与β重合
相关习题

科目:高中数学 来源:同步题 题型:单选题

若平面α、β的法向量分别为,b=(-1,2,6),则 
[     ]
A.α∥β    
B.α与β相交但不垂直
C.α⊥β    
D.α∥β或α与β重合

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面α、β的法向量分别为
m
=(1,-5,2),
n
=(-3,1,4),则(  )
A、α⊥β
B、α∥β
C、α、β相交但不垂直
D、以上均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面α,β的法向量分别为
a
=(-1,2,4),
b
=(x,-1,-2),并且α∥β,则x的值为(  )
A、10
B、-10
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下面命题中,正确命题的个数为
①若数学公式1数学公式2分别是平面α、β的法向量,则数学公式1数学公式2?α∥β;
②若数学公式1数学公式2分别是平面α、β的法向量,则α⊥β?数学公式1数学公式2=0;
③若数学公式是平面α的法向量,数学公式数学公式是α内两不共线向量数学公式数学公式数学公式,(λ,μ∈R)则数学公式数学公式=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省驻马店市泌阳一中高二(上)12月月考数学试卷(理科)(解析版) 题型:选择题

下面命题中,正确命题的个数为( )
①若12分别是平面α、β的法向量,则12?α∥β;
②若12分别是平面α、β的法向量,则α⊥β?12=0;
③若是平面α的法向量,是α内两不共线向量,(λ,μ∈R)则=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下面命题中,正确命题的个数为(  )
①若
n
1
n
2分别是平面α、β的法向量,则
n
1
n
2?α∥β;
②若
n
1
n
2分别是平面α、β的法向量,则α⊥β?
n
1
n
2=0;
③若
n
是平面α的法向量,
b
c
是α内两不共线向量
a
b
c
,(λ,μ∈R)则
n
a
=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面命题中,正确命题的个数为(  )
①若
n
1
n
2分别是平面α、β的法向量,则
n
1
n
2β;
②若
n
1
n
2分别是平面α、β的法向量,则α⊥β?
n
1
n
2=0;
③若
n
是平面α的法向量,
b
c
是α内两不共线向量
a
b
c
,(λ,μ∈R)则
n
a
=0;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期模拟预测理科数学试卷(解析版) 题型:解答题

在四棱锥中,平面,底面为矩形,.

(Ⅰ)当时,求证:

(Ⅱ)若边上有且只有一个点,使得,求此时二面角的余弦值.

【解析】第一位女利用线面垂直的判定定理和性质定理得到。当a=1时,底面ABCD为正方形,

又因为,………………2分

,得证。

第二问,建立空间直角坐标系,则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

设BQ=m,则Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得

由此知道a=2,  设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

解:(Ⅰ)当时,底面ABCD为正方形,

又因为,………………3分

(Ⅱ) 因为AB,AD,AP两两垂直,分别以它们所在直线为X轴、Y轴、Z轴建立坐标系,如图所示,

则B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

设BQ=m,则Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知时,存在点Q使得

当且仅当m=a-m,即m=a/2时,BC边上有且只有一个点Q,使得由此知道a=2,

设平面POQ的法向量为

,所以    平面PAD的法向量

的大小与二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值为

 

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期联考理科数学试卷(解析版) 题型:解答题

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>


同步练习册答案