精英家教网 > 初中数学 > 题目详情
用一副七巧板可以拼出图形

A、5种  
B、10种
C、20种  
D、无数种
相关习题

科目:初中数学 来源:专项题 题型:单选题

用一副七巧板可以拼出图形
[     ]
A、5种  
B、10种
C、20种  
D、无数种

查看答案和解析>>

科目:初中数学 来源: 题型:

25、七巧板是我们祖先创造的一种智力玩具,如图,整副七巧板是由一个正方形分割成七小块而成(其中:五块等腰直角三角形、一块正方形和一块平行四边形),用这七小块可以拼出各种各样的漂亮图案.请用这七小块拼出一个等腰梯形,并在网格中画出图形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

七巧板是我们祖先创造的一种智力玩具,如图,整副七巧板是由一个正方形分割成七小块而成(其中:五块等腰直角三角形、一块正方形和一块平行四边形),用这七小块可以拼出各种各样的漂亮图案.请用这七小块拼出一个等腰梯形,并在网格中画出图形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

七巧板是我们祖先创造的一种智力玩具,如图,整副七巧板是由一个正方形分割成七小块而成(其中:五块等腰直角三角形、一块正方形和一块平行四边形),用这七小块可以拼出各种各样的漂亮图案.请用这七小块拼出一个等腰梯形,并在网格中画出图形


精英家教网
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=
 
;各内角中最小内角是
 
度,最大内角是
 
度;用它们拼成的一个五边形如图②,其面积是
 

(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上;(格点图中,上下、左右相邻两点距离都为1)
(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.注:不能拼成与图①或②全等的多边形!
精英家教网

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.  
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=    ;各内角中最小内角是    度,最大内角是      度;用它们拼成的一个五边形如图②,其面积是     ,
(2)请用这副七巧板,既不留下一丝空白,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中,上下、左右相邻两点距离都为1).
注:不能拼成与图①或②全等的多边形!
        

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=______;各内角中最小内角是______度,最大内角是______度;用它们拼成的一个五边形如图②,其面积是______;
(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上;(格点图中,上下、左右相邻两点距离都为1)
(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.注:不能拼成与图①或②全等的多边形!

查看答案和解析>>

科目:初中数学 来源:浙江省中考真题 题型:解答题

对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”。
(1)如果设正方形OGFN的边长为1,这七块部件的各边长中,从小到大的四个不同值分别为1、x1、x2、x3,那么x1=_______;各内角中最小内角是______度,最大内角是______度;用它们拼成的一个五边形如图②,其面积是_______;
(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中,上下、左右相邻两点距离都为1);(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”,你认为这个结论正确吗?请说明理由。

注:不能拼成与图①或②全等的多边形!

查看答案和解析>>

科目:初中数学 来源:浙江省宁波市2006年初中毕业生学业考试数学试题 题型:044

对正方形ABCD分划如图,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.

(1)如果设正方形OGFN的边长为1,这七块部件的各边长中,从小到大的四个不同值分别为1、x1、x2、x3,那么x1________;各内角中最小内角是________度,最大内角是________度;用它们拼成的一个五边形如图,其面积是________

(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上(格点图中,上下、左右相邻两点距离都为1).

(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.

注:不能拼成与图①或②全等的多边形!

查看答案和解析>>


同步练习册答案