精英家教网 > 高中数学 > 题目详情
存在实数m,n(m<n),使得函数f(x)=ax(a>1)的定义域和值域均为[m,n] ,则实数a的取值范围为

A.(1,ee
B.           
C.(1,e)          
D.(1,
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx满足f(2)=0,且方程f(x)=x有相等的实根,
(1)求f(x)的解析式;
(2)若不等式f(x)≤t2+ct+1对一切t∈R,x∈R恒成立,求实数C的取值范围;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n]?若存在,求出m、n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+8x,
(Ⅰ)求f(x)在区间[0,5]上的最大值和最小值;
(Ⅱ)是否存在实数m,n(m<n),使函数f(x)在[m,n]上的值域是[4m,4n],若存在,求出m,n;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+4x+b,(a<0,b<0,a,b∈Z),设关于x的方程f(x)=x的两实数根为α,β,且|α-β|=1.
(1)求函数f(x)的解析式;
(2)问是否存在实数m,n(m<n),使得f(x)的定义域和值域都是[m,n]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(2)=0,且方程f(x)=x有两个相等的实数根.
(1)求f(x)的解析式;
(2)求函数在区间[-3,3]上的最大值和最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[2m,2n],如果存在,求出m,n的值,如不存在,请说明理由.

查看答案和解析>>


同步练习册答案