精英家教网 > 高中数学 > 题目详情
平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,则动点M满足的方程(  )
A.x2=6yB.x2=12yC.y2=6xD.y2=12x
相关习题

科目:高中数学 来源: 题型:

19、平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,求动点M满足的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,求动点M满足的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,求动点M满足的方程.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省亳州三中高二(下)第一次月考数学试卷(解析版) 题型:选择题

平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,则动点M满足的方程( )
A.x2=6y
B.x2=12y
C.y2=6
D.y2=12

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

平面上动点M到定点F(3,0)的距离比M到直线l:x+1=0的距离大2,则动点M满足的方程


  1. A.
    x2=6y
  2. B.
    x2=12y
  3. C.
    y2=6x
  4. D.
    y2=12x

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(1)已知平面上两定点A(-2,0).B(2,0),且动点M标满足
MA
MB
=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图,l是经过椭圆
y2
25
+
x2
16
=1
长轴顶点A且与长轴垂直的直线,E.F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,求α的取值范围.
并将此题类比到双曲线:
y2
25
-
x2
16
=1
,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合,请作出其图象.若∠APB=α,写出角α的取值范围.(不需要解题过程)

查看答案和解析>>

科目:高中数学 来源:金山区一模 题型:解答题

(1)已知平面上两定点A(-2,0).B(2,0),且动点M标满足
MA
MB
=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图,l是经过椭圆
y2
25
+
x2
16
=1
长轴顶点A且与长轴垂直的直线,E.F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,求α的取值范围.
并将此题类比到双曲线:
y2
25
-
x2
16
=1
,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合,请作出其图象.若∠APB=α,写出角α的取值范围.(不需要解题过程)
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省哈师大附中高三(上)第三次月考数学试卷(文科)(解析版) 题型:解答题

抛物线y2=2px(p>0)上任一点Q到其内一点P(3,1)及焦点F的距离之和的最小值为4.
(1)求抛物线的方程;
(2)设动直线y=kx+b与抛物线交于A(x1,y1),B(x2,y2)两点,且|y1-y2|的值为定值a(a>0),过弦AB的中点M作平行于抛物线的轴的直线交抛物线于点D,求△ABD的面积.

查看答案和解析>>


同步练习册答案