精英家教网 > 高中数学 > 题目详情
设f(x)是定义在区间[a,b]上的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上(  )
A.至少有一实根B.至多有一实根
C.没有实根D.必有唯一实根
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间[a,b]上的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)是定义在区间[a,b]上的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上(  )
A.至少有一实根B.至多有一实根
C.没有实根D.必有唯一实根

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省许昌市四校联考高一(上)期中数学试卷(解析版) 题型:选择题

设f(x)是定义在区间[a,b]上的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上( )
A.至少有一实根
B.至多有一实根
C.没有实根
D.必有唯一实根

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设f(x)是定义在区间[a,b]上的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上


  1. A.
    至少有一实根
  2. B.
    至多有一实根
  3. C.
    没有实根
  4. D.
    必有唯一实根

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2x+1
(x>1)
,其中b为实数.
(1)①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数数学公式,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=数学公式,其中b为实数.
(1)求证:函数f(x)具有性质P(b);
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:天河区三模 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a).
(1)设函数f(x)=Inx+
b+2
x+1
(x>1)
,其中b为实数.
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,a=mx1+(1-m)x2,β=(1-m)x1+mx2,且a>1,β>1,若|g(a)-g(β)|<|g(x1)-g(x2)|,求m取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2
x+1
(x>1)
,其中b为实数.
(1)求证:函数f(x)具有性质P(b);
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:江苏高考真题 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x),如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),
(Ⅰ)设函数,其中b为实数,
(ⅰ)求证:函数f(x)具有性质P(b);
(ⅱ)求函数f(x)的单调区间;
(Ⅱ)已知函数g(x)具有性质P(2)。给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α) -g(β)|<|g(x1)-g(x2)|,求m的取值范围。

查看答案和解析>>


同步练习册答案