精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为(0,+∞),且f(x)>0,f′(x)>0则函数y=xf(x)(  )
A.存在极大值B.存在极小值C.是增函数D.是减函数
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞),对于任意的正实数m,n,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0,证明f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

10、函数f(x)的定义域为(0,+∞),且f(x)>0,f′(x)>0则函数y=xf(x)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

9、函数f(x)的定义域为(0,+∞)且f(x)>0,f′(x)>0,m为正数,则函数y=(x+m)•f(x+m)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f(
xy
)=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞),且对一切x>0,y>0,都有 f(
x
y
)=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性并证明;
(3)若f(6)=1,解不等式f(x+3)-f(
1
x
)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞)且f(x)>0,f′(x)>0,m为正数,则函数y=(x+m)•f(x+m)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为(0,+∞),并满足以下条件:
①对任意的x>0,y>0,有f(xy)=f(x)+f(y); ②x>1时,f(x)>0.
(1)求f(1)的值;
(2)求证:f(x)在(0,+∞)上是单调增函数;
(3)若x满足f(
1
2
)≤f(x)≤f(2)
,求函数y=2x+
1
x
的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)的定义域为(0,+∞),并满足以下条件:
①对任意的x>0,y>0,有f(xy)=f(x)+f(y); ②x>1时,f(x)>0.
(1)求f(1)的值;
(2)求证:f(x)在(0,+∞)上是单调增函数;
(3)若x满足数学公式,求函数数学公式的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数f(x)的定义域为(0,+∞),对于任意的正实数m,n,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0,证明f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的定义域为(0,+∞)且f(x)>0,f′(x)>0,m为正数,则函数y=(x+m)•f(x+m)(  )
A.是增函数B.是减函数C.存在极大值D.存在极小值

查看答案和解析>>


同步练习册答案