精英家教网 > 高中数学 > 题目详情
函数y=sin(2x+
π
4
)的图象可由函数y=sin2x的图象(  )
A.向左平移
π
8
个单位长度而得到
B.向右平移
π
8
个单位长度而得到
C.向左平移
π
4
个单位长度而得到
D.向右平移
π
4
个单位长度而得到
相关习题

科目:高中数学 来源: 题型:

函数y=sin(2x+
π
4
)的图象可由函数y=sin2x的图象(  )

查看答案和解析>>

科目:高中数学 来源:浙江模拟 题型:单选题

函数y=sin (2x+
π
4
)的图象可由函数y=cos 2x的图象(  )
A.向左平移
π
8
个单位长度而得到
B.向右平移
π
8
个单位长度而得到
C.向左平移
π
4
个单位长度而得到
D.向右平移
π
4
个单位长度而得到

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=sin(2x+
π
4
)的图象可由函数y=sin2x的图象(  )
A.向左平移
π
8
个单位长度而得到
B.向右平移
π
8
个单位长度而得到
C.向左平移
π
4
个单位长度而得到
D.向右平移
π
4
个单位长度而得到

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=sin(2x+
π
4
)的图象可由函数y=sin2x的图象(  )
A.向左平移
π
8
个单位长度而得到
B.向右平移
π
8
个单位长度而得到
C.向左平移
π
4
个单位长度而得到
D.向右平移
π
4
个单位长度而得到

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(x+
π
2
)
g(x)=sin(x-
π
2
)
,给出下列命题:
①函数y=f(x)g(x)的最小正周期为2π;
②函数y=f(x)-g(x)的最大值是
2

③函数y=f(2x)的图象可由y=g(2x)的图象向左平移
π
4
个单位得到;
④函数y=f(2x)的图象可由y=g(2x)的图象向右平移
π
4
个单位得到.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(2x+
π4
)+1.
(1)用“五点法”画出函数的草图;
(2)函数图象可由y=sinx的图象怎样变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=sin(2x+
π
4
),给出它的以下四个结论:①最小正周期为π;②图象可由y=sinx的图象先向左平移
π
4
个单位长度,再把所得图象上各点的横坐标变为原来的
1
2
倍(纵坐标不变)而得到;③图象关于点(
π
8
,0)对称;④图象关于直线x=
8
对称.其中所有正确的结论的序号是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=cos(x+
π
2
)
g(x)=sin(x-
π
2
)
,给出下列命题:
①函数y=f(x)g(x)的最小正周期为2π;
②函数y=f(x)-g(x)的最大值是
2

③函数y=f(2x)的图象可由y=g(2x)的图象向左平移
π
4
个单位得到;
④函数y=f(2x)的图象可由y=g(2x)的图象向右平移
π
4
个单位得到.
其中正确命题的序号是 ______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=sin(2x+
π
4
)+1.
(1)用“五点法”画出函数的草图;
(2)函数图象可由y=sinx的图象怎样变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=sin(2x+
π
3
)的单调减区间为[kπ+
π
12
,kπ+
12
],k∈Z;
②函数y=
3
cos2x-sin2x图象的一个对称中心为(
π
6
,0);
③函数y=sin(
1
2
x-
π
6
)在区间[-
π
3
11π
6
]上的值域为[-
3
2
2
2
];
④函数y=cosx的图象可由函数y=sin(x+
π
4
)的图象向右平移
π
4
个单位得到;
⑤若方程sin(2x+
π
3
)-a=0在区间[0,
π
2
]上有两个不同的实数解x1,x2,则x1+x2=
π
6

其中正确命题的序号为
 

查看答案和解析>>


同步练习册答案