精英家教网 > 高中数学 > 题目详情
若直线l的方程为x=2,则该直线的倾斜角是(  )
A.60°B.45°C.90°D.180°
相关习题

科目:高中数学 来源: 题型:

1、若直线l的方程为x=2,则该直线的倾斜角是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l的方程为x=2,则该直线的倾斜角是(  )
A.60°B.45°C.90°D.180°

查看答案和解析>>

科目:高中数学 来源:2009-2010学年福建省三明市五校联考高二(上)期中数学试卷(必修2)(解析版) 题型:选择题

若直线l的方程为x=2,则该直线的倾斜角是( )
A.60°
B.45°
C.90°
D.180°

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线l的方程为x=2,则该直线的倾斜角是


  1. A.
    60°
  2. B.
    45°
  3. C.
    90°
  4. D.
    180°

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l经过两条直线2x-3y-3=0和x+y+2=0的交点,且与直线3x+y-1=0平行,则该直线l方程为
15x+5y+16=0
15x+5y+16=0

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省南京师大附中高三(上)第二次段考数学试卷(解析版) 题型:填空题

若直线l经过两条直线2x-3y-3=0和x+y+2=0的交点,且与直线3x+y-1=0平行,则该直线l方程为   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若直线l经过两条直线2x-3y-3=0和x+y+2=0的交点,且与直线3x+y-1=0平行,则该直线l方程为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

22.已知复数z0=l-mi(m>0),z=x+yi和w=x′+y′i.其中xyx′,y′均为实数.i为虚数单位,且对于任意复数z,有w=·.

(1)试求m的值,并分别写出x′和y′用x、y表示的关系式;

(2)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.

当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.

(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在c 该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生从以下三个小题中任选一个作答,若多选,则按所选的第一题计分.)
A(坐标系与参数方程选讲选做题)直线l:
x=4t
y=3t-2
(t为参数)被曲线C:
x=5+2cosθ
y=3+2sinθ
(θ为参数)所截得的弦长为
2
3
2
3

B(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为
-2<m<8
-2<m<8

C(几何证明选讲选做题)若一直角三角形的内切圆与外接圆的面积分别π与9π,则该三角形的面积为
7
7

查看答案和解析>>

科目:高中数学 来源:2011年上海市徐汇区高考数学三模试卷(文科)(解析版) 题型:解答题

定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆
(1)若椭圆,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>


同步练习册答案