精英家教网 > 高中数学 > 题目详情
已知:f(
1
x
)=
1
x+1
,则f(2)的值为(  )
A.
1
3
B.
2
3
C.3D.
3
2
相关习题

科目:高中数学 来源: 题型:

已知:f(
1
x
)=
1
x+1
,则f(2)的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知:f(
1
x
)=
1
x+1
,则f(2)的值为(  )
A.
1
3
B.
2
3
C.3D.
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4个命题:
①若等差数列{an}的前n项和为Sn则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
),共线;
②命题:“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③若函数f(x)=x-
1
x
+k在(0,1)没有零点,则k的取值范围是k≥2,
④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=
1
2
,则xf(x)<1的解集为(-2,2).
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知4个命题:
①若等差数列{an}的前n项和为Sn则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
),共线;
②命题:“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
③若函数f(x)=x-
1
x
+k在(0,1)没有零点,则k的取值范围是k≥2,
④f(x)是定义在R上的奇函数,f′(x)>0,且f(2)=
1
2
,则xf(x)<1的解集为(-2,2).
其中正确的是______.

查看答案和解析>>

科目:高中数学 来源:淄博一模 题型:解答题

已知函数f(x)=|1-
1
x
|
,(x>0).
(Ⅰ)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(Ⅱ)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(Ⅲ)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

问题1:已知函数f(x)=
x
1+x
,则f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示为f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知映射:f:A→B,其中→A=R+,B=R,对应法则为:f:x→y=lnx+
1
x
,对于实数t∈B,在集合A中不存在原象,则t的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:宁波模拟 题型:单选题

已知双曲线
x2
a
-
y2
a2+a+1
=1
的离心率的范围是数集M,设p:“k∈M”; q:“函数f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域为R”.则P是Q成立的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)已知可导函数f(x),x∈D,则函数f(x)在点x0处取得极值的充分不必要条件是f′(x0)=0,x0∈D.
(2)已知命题P:?x∈R,sinx≤1,则¬p:?x∈R,sinx>1.
(3)已知命题p:
1
x 2-3x+2
>0
,则¬p:
1
x 2-3x+2
≤0

(4)给定两个命题P:对任意实数x都有ax2+ax+1>0恒成立;Q:关于x的方程x2-x+a=0有实数根.如果P∧Q为假命题,P∨Q为真命题,则实数a的取值范围是(-∞,0)∪(
1
4
,4)

其中所有真命题的编号是
(2),(4)
(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=|1-
1x
|
,(x>0).
(Ⅰ)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(Ⅱ)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(Ⅲ)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.

查看答案和解析>>


同步练习册答案