精英家教网 > 高中数学 > 题目详情
已知函数f(x),并定义数列{an}如下:a1∈(0,1)、an+1=f(an)(n∈N*).如果数列{an}满足:对任意n∈N*,an+1>an则函数f(x)的图象可能是(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
相关习题

科目:高中数学 来源:南汇区二模 题型:单选题

已知函数f(x),并定义数列{an}如下:a1∈(0,1)、an+1=f(an)(n∈N*).如果数列{an}满足:对任意n∈N*,an+1>an则函数f(x)的图象可能是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2008年上海市南汇区高考数学二模试卷(文理合卷)(解析版) 题型:选择题

已知函数f(x),并定义数列{an}如下:a1∈(0,1)、an+1=f(an)(n∈N*).如果数列{an}满足:对任意n∈N*,an+1>an则函数f(x)的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x),并定义数列{an}如下:a1∈(0,1)、an+1=f(an)(n∈N*).如果数列{an}满足:对任意n∈N*,an+1>an则函数f(x)的图象可能是


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x、y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列an满足a1=
1
2
an+1=
2an
1+
a
2
n
,设bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)

(1)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(2)证明数列f(an)是等比数列,并求f(an)的表达式和
lim
n→∞
bn
的值;
(3)是否存在m∈N*,使得对任意n∈N*,都有bn
m-8
4
成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x、y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列an满足a1=
1
2
an+1=
2an
1+an 2

bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)

(1)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(2)证明数列f(an)是等比数列,并求f(an)的表达式和
lim
n→∞
bn
的值;
(3)设cn=
n
2
bn+2
,是否存在m∈N+,使得对任意n∈N+cn
6
7
log
2
2
m-
18
7
log2m
 恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+mx在(0,1)上是增函数
(1)求实数m的取值集合A
(2)当m取值集合A中的最小值时,定义数列{an};满足a1=3,且an>0,an+1=
-3f/(an)+9
-2,设
bn=an-1,证明:数列{bn}是等比数列,并求数列{an}的通项公式.
(3)若cn=nan,数列{cn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列{an}满足a1=
1
2
an+1=
2a
1+
a
2
n

(I)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得对任意n∈N*cn
6
7
lo
g
2
2
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1
,对任意x,y∈(-1,1),恒有f(x)+f(y)=f(
x+y
1+xy
)
成立,又数列{an}满足a1=
1
2
an+1=
2a
1+
a2n

(I)在(-1,1)内求一个实数t,使得f(t)=2f(
1
2
)

(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设cn=
n
2
bn+2,bn=
1
f(a1)
+
1
f(a2)
+
1
f(a3)
+…+
1
f(an)
,是否存在m∈N*,使得对任意n∈N*cn
6
7
lo
g22
m-
18
7
log2m
恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省亳州一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)定义在区间,对任意x,y∈(-1,1),恒有成立,又数列{an}满足
(I)在(-1,1)内求一个实数t,使得
(II)求证:数列{f(an)}是等比数列,并求f(an)的表达式;
(III)设,是否存在m∈N*,使得对任意n∈N*恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省武汉二中高二(下)期中数学试卷(解析版) 题型:解答题

已知函数f(x)=-x3+mx在(0,1)上是增函数
(1)求实数m的取值集合A
(2)当m取值集合A中的最小值时,定义数列{an};满足a1=3,且an>0,an+1=-2,设
bn=an-1,证明:数列{bn}是等比数列,并求数列{an}的通项公式.
(3)若cn=nan,数列{cn}的前n项和为Sn,求Sn

查看答案和解析>>


同步练习册答案