精英家教网 > 初中数学 > 题目详情
在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为(  )
A.17B.15C.13D.11
相关习题

科目:初中数学 来源: 题型:

3、在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为(  )
A.17B.15C.13D.11

查看答案和解析>>

科目:初中数学 来源: 题型:

在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为   (   )

A.17   B.15.   C.13  D.11

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为


  1. A.
    17
  2. B.
    15
  3. C.
    13
  4. D.
    11

查看答案和解析>>

科目:初中数学 来源:云南省竞赛题 题型:单选题

在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x,偶数的个数为y,完全平方数的个数为z,合数的个数为u.则x+y+z+u的值为
[     ]
A.17
B.15
C.13
D.11

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2009条棱分别停止在所到的正方体顶点处时,它们之间的距离是(  )
A、
2
B、0
C、
3
D、1

查看答案和解析>>

科目:初中数学 来源: 题型:

Rt△ABC中,∠ACB=90°,M为AB中点,将线段BM绕点B顺时针旋转90°,得到线段BP,连CP、AP,CP交AB于点O(如图①).
(1)当AC=BC时,求证:△OPB∽△PAB;
(2)若BC=2,AC=b,当b为多长时,△ACB与△ABP相似?
(3)图①中,将点A沿直线AC向下运动(其余条件不变),则Rt△ABC、△PAB、△PBC都会变化,如图②所示,如果点A一直运动到BC下方,如图③所示,请在图(3)中按题意把图画完整,若BC=2,设AC=x,△BCP的面积为y1,△PAB的面积为y2,试问y1、y2是否都为定值?若是,求出这个定值;若不是,求出其关于x的函数关系式.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、生活中,在分析研究比赛成绩时经常要考虑不等关系.例如:一射击运动员在一次比赛中将进行10次射击,已知前7次射击共中61环,如果他要打破88环(每次射击以1到10的整数环计数)的记录,问第8次射击不能少于多少环?
我们可以按以下思路分析:
首先根据最后二次射击的总成绩可能出现的情况,来确定要打破88环的记录,第8次射击需要得到的成绩,并完成下表:
最后二次射击总成绩 第8次射击需得成绩
20环
19环
18环
根据以上分析可得如下解答:
解:设第8次射击的成绩为x环,则可列出一个关于x的不等式:
61+20+x>88

解得
x>7

所以第8次设计不能少于
8
环.

查看答案和解析>>

科目:初中数学 来源: 题型:

Rt△ABC中,∠C=90°,AC=6厘米,BC=8厘米,动点P从点A开始在线段AC上以1厘米/秒的速度向点C移动,同时动点Q从点B开始在线段BA上以2厘米/秒的速度向点A移动,当一个动点先运动到终点时,整个运动过程结束.设点P、Q移动的时间为t秒.
(1)设△APQ的面积为y(厘米2),请你求出y与t的函数关系式,写出自变量t的取值范围,并求出当t为何值时,△APQ的面积最大;
(2)在整个运动过程中,是否会存在以点A、P、Q为顶点的三角形与△ABC相似?若存在,请你求出此时t的值;若不存在,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是(  )

查看答案和解析>>


同步练习册答案