精英家教网 > 初中数学 > 题目详情
在横轴上的点(  )
A.横坐标为0B.纵坐标为0
C.横,纵坐标为0D.横,纵坐标不确定
相关习题

科目:初中数学 来源:不详 题型:单选题

在横轴上的点(  )
A.横坐标为0B.纵坐标为0
C.横,纵坐标为0D.横,纵坐标不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

要说明一个点在y轴上,只要说明这个点的(  )
A.横坐标为0
B.纵坐标为0
C.横、纵坐标中有一个为零
D.横,纵坐标相等

查看答案和解析>>

科目:初中数学 来源:2012-2013学年湖南省宁乡县玉潭镇城北中学七年级下学期期中考试数学试卷(带解析) 题型:单选题

下列说法不正确的是(   )

A.x轴上的点纵坐标为0
B.平面直角坐标系中,点(2,3)与(3,2)表示不同的点
C.坐标轴上的点不属于任何象限
D.横纵坐标的符号相同的点一定在第一象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法不正确的是(   )
A.x轴上的点纵坐标为0
B.平面直角坐标系中,点(2,3)与(3,2)表示不同的点
C.坐标轴上的点不属于任何象限
D.横纵坐标的符号相同的点一定在第一象限

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函精英家教网数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源:2009-2010学年浙江省宁波市某初中九年级(下)期始考试数学试卷(解析版) 题型:解答题

如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《一次函数》(05)(解析版) 题型:解答题

(2009•随州)如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源:2009年湖北省随州市中考数学试卷(解析版) 题型:解答题

(2009•随州)如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,-1)和(0,-5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.
(1)写出A,B两点的坐标,并求直线AB的解析式;
(2)如图2,将△A0B沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).
①当x为何值时,线段DE平分△AOB的面积;
②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>


同步练习册答案