精英家教网 > 高中物理 > 题目详情
多选
甲、乙两个物体从同一地点沿同一方向做直线运动的速度图像如图所示,则


A.两个物体两次相遇的时间是2s和6s
B.4s时甲在乙的后面
C.2s时两物体相距最远
D.甲物体一直向前运动而乙物体向前运动2s,随后向后运动
相关习题

科目:高中物理 来源:2011年江苏省南京、盐城高考物理三模试卷(解析版) 题型:解答题

本题包括A、B、C三小题,请选定其中的两题,并在相应的答题区域作答.若三题都做,则按A、B两题评分.
A.(1)以下说法正确的是的______
A、液体中的扩散现象是由于外界对液体作用引起的.
B、多晶体沿各个方向的物理性质表现为各向同性.
C、分子间距离为平衡距离时,分子间作用力为零,分子势力能最大.
D、温度相同的物体分子平均动能一定相同,而分子无规则运动的平均速率不一定相同.
(2)给旱区人民送水的消防车停在水平地面上,在缓慢放水的过程中,若车胎不漏气,胎内气体温度不变,不计分子间作用力,则胎内______热量(填“吸收”或“放出”),单位时间内单位面积的车胎内壁受到气体分子平均撞击次数不清______(填“增加”、“减少”或“不变”).
(3)标准状态下气体的摩尔体积为V=22.4L/mol,请估算教室内空气分子的平均间距d.设教室内的温度为0℃,阿伏加德罗常数NA=6X1023mol-1,(要写出必要的推算过程,计算结果保留1位有效数字).
B.
(1)北京时间2011年3月11日13时46分,在日本东北部宫城县以东太平洋海域发生里氏9.0级地震,地震造成了重大的人员伤亡,下列说法正确的是______
A、震源停止振动时,地震波的传播立即停止.
B、地震波能传播能量.
C、当地震波由海底传播到海水中时地震波的频率不变.
D、地震波与电磁波一样均可以在真空中传播.
(2)图甲所示是一列沿X轴正方向传播的简谐横波在t=0时刻的波形,质点P的振动图象如图乙所示,则这列波的传播速度______m/s,质点P的振动方程为X=______cm.
(3)如图丙所示,一个截面为直角三角形的玻璃砖放在水平面上,折射率n=.入射光线垂直于AB边从F点射入玻璃砖,经E点折射后到达地面上的P点,已知AE=ED=L,∠ABD=60°,试求光线从F到P所用时间?(光在真空中的速度大小为c).

C.(1)核能作为一种新能源在现代社会中已不可缺少,但安全是核电站面临的非常严峻的问题.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,钚的危险性在于它对人体的毒性,与其他放射性元素相比钚在这方面更强,一旦侵入人体,就会潜伏人体肺部、骨骼等组织细胞中,破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素94239Pu的半衰期为24100年,其衰变方程为94239Pu→X+24He+γ,下列有关说法正确的是______

A、X原子核中含有143个中子.
B、100个94239Pu经过24100年后一定还剩余50个.
C、由于衰变时释放巨大能量,根据E=mC2,衰变过程总质量增加.
D、衰变发出的γ、放射线是波长很短的光子,具有很强的穿透能力.
(2)氢原子弹的光谱在可见光范围内有四条谱线,其中在靛紫色区内的一条是处于量子数n=4的能级氢原子跃迁到n=2的能级发出的,氢原子的能级如图所示,已知普朗克恒量h=6.63×10-34J?s,则该条谱线光子的能量为______eV,该条谱线光子的频率为______Hz.(结果保留3位有效数字)
(3)已知金属铷的极限频率为5.15×1014Hz,现用波长为5.0×10-7m的一束光照射金属铷,能否使金属铷发生光电效应?若能,请算出逸出光电子的最大初动能.(结果保留2位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

(2010?盐城三模)本题包括A、B、C三小题,请选定其中的两题,并在相应的答题区域作答.若三题都做,则按A、B两题评分.
A.(1)以下说法正确的是的
BD
BD

A、液体中的扩散现象是由于外界对液体作用引起的.
B、多晶体沿各个方向的物理性质表现为各向同性.
C、分子间距离为平衡距离时,分子间作用力为零,分子势力能最大.
D、温度相同的物体分子平均动能一定相同,而分子无规则运动的平均速率不一定相同.
(2)给旱区人民送水的消防车停在水平地面上,在缓慢放水的过程中,若车胎不漏气,胎内气体温度不变,不计分子间作用力,则胎内
吸收
吸收
热量(填“吸收”或“放出”),单位时间内单位面积的车胎内壁受到气体分子平均撞击次数不清
减少
减少
(填“增加”、“减少”或“不变”).
(3)标准状态下气体的摩尔体积为V0=22.4L/mol,请估算教室内空气分子的平均间距d.设教室内的温度为0℃,阿伏加德罗常数NA=6X1023mol-1,(要写出必要的推算过程,计算结果保留1位有效数字).
B.
(1)北京时间2011年3月11日13时46分,在日本东北部宫城县以东太平洋海域发生里氏9.0级地震,地震造成了重大的人员伤亡,下列说法正确的是
BC
BC

A、震源停止振动时,地震波的传播立即停止.
B、地震波能传播能量.
C、当地震波由海底传播到海水中时地震波的频率不变.
D、地震波与电磁波一样均可以在真空中传播.
(2)图甲所示是一列沿X轴正方向传播的简谐横波在t=0时刻的波形,质点P的振动图象如图乙所示,则这列波的传播速度
2
2
m/s,质点P的振动方程为X=
8sin0.5πt
8sin0.5πt
cm.
(3)如图丙所示,一个截面为直角三角形的玻璃砖放在水平面上,折射率n=
2
.入射光线垂直于AB边从F点射入玻璃砖,经E点折射后到达地面上的P点,已知AE=ED=L,∠ABD=60°,试求光线从F到P所用时间?(光在真空中的速度大小为c).

C.(1)核能作为一种新能源在现代社会中已不可缺少,但安全是核电站面临的非常严峻的问题.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,钚的危险性在于它对人体的毒性,与其他放射性元素相比钚在这方面更强,一旦侵入人体,就会潜伏人体肺部、骨骼等组织细胞中,破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素94239Pu的半衰期为24100年,其衰变方程为94239Pu→X+24He+γ,下列有关说法正确的是
AD
AD


A、X原子核中含有143个中子.
B、100个94239Pu经过24100年后一定还剩余50个.
C、由于衰变时释放巨大能量,根据E=mC2,衰变过程总质量增加.
D、衰变发出的γ、放射线是波长很短的光子,具有很强的穿透能力.
(2)氢原子弹的光谱在可见光范围内有四条谱线,其中在靛紫色区内的一条是处于量子数n=4的能级氢原子跃迁到n=2的能级发出的,氢原子的能级如图所示,已知普朗克恒量h=6.63×10-34J?s,则该条谱线光子的能量为
2.55
2.55
eV,该条谱线光子的频率为
6.15×1014
6.15×1014
Hz.(结果保留3位有效数字)
(3)已知金属铷的极限频率为5.15×1014Hz,现用波长为5.0×10-7m的一束光照射金属铷,能否使金属铷发生光电效应?若能,请算出逸出光电子的最大初动能.(结果保留2位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

精英家教网(选做题)(请从A、B和C三小题中选定两小题作答,并在答题卡相应的答题区域内作答,如都作答则按A、B两小题评分)
A.(选修模块3-3)
封闭在气缸内一定质量的理想气体由状态A变到状态D,其体积V与热力学温度关T系如图所示,该气体的摩尔质量为M,状态A的体积为V0,温度为T0,O、A、D三点在同一直线上,阿伏伽德罗常数为NA
(1)由状态A变到状态D过程中
 

A.气体从外界吸收热量,内能增加
B.气体体积增大,单位时间内与器壁单位面积碰撞的分子数减少
C.气体温度升高,每个气体分子的动能都会增大
D.气体的密度不变
(2)在上述过程中,气体对外做功为5J,内能增加9J,则气体
 
(选“吸收”或“放出”)热量
 
J.
(3)在状态D,该气体的密度为ρ,体积为2V0,则状态D的温度为多少?该气体的分子数为多少?
B.(选修模块3-4)
(1)下列说法中正确的是
 

A.X射线穿透物质的本领比γ射线更强
B.在电磁波发射技术中,使电磁波随各种信号而改变的技术叫做调谐
C.根据宇宙大爆炸学说,遥远星球发出的红光被地球接收到时可能是红外线精英家教网
D.爱因斯坦狭义相对论指出:真空中的光速在不同的惯性参考系中都是相同的
(2)如图所示,直角三角形ABC为一棱镜的横截面,∠A=30°,棱镜材料的折射率n=
3
.在此截面所在的平面内,空气中的一条光线平行于底边AB从AC边上的M点射入棱镜,经折射射到AB边.光线从AC边进入棱镜时的折射角为
 
,试判断光线能否从AB边射出,
 
(填“能”或“不能”).
(3)一列简谐横波由P点向Q点沿直线传播,P、Q两点相距1m.甲、乙分别为P、Q两质点的振动图象,如图所示,如果波长λ>1m,则波的传播速度为多少?
精英家教网
C.(选修模块3-5)
(1)一个质子以1.0×107m/s的速度撞入一个静止的铝原子核后被俘获,铝原子核变为硅原子核,已知铝核的质量是质子的27倍,硅核的质量是质子的28倍,则下列判断中正确的是
 

A.核反应方程为1327Al+11H→1428Si
B.核反应方程为1327Al+01n→1428Si
C.硅原子核速度的数量级为107m/s,方向跟质子的初速度方向一致
D.硅原子核速度的数量级为105m/s,方向跟质子的初速度方向一致
(2)目前,日本的“核危机”引起了全世界的瞩目,核辐射放出的三种射线超过了一定的剂量会对人体产生伤害.三种射线穿透物质的本领由弱到强的排列是
 

A.α射线,β射线,γ射线
B.β射线,α射线,γ射线
C.γ射线,α射线,β射线
D.γ射线,β射线,α射线
(3)太阳能量来源于太阳内部氢核的聚变,设每次聚变反应可以看作是4个氢核(11H)结合成1个氦核(24He),同时释放出正电子(10e).已知氢核的质量为mP,氦核的质量为mα,正电子的质量为me,真空中光速为c.计算每次核反应中的质量亏损及氦核的比结合能.

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

 选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)

A.(选修模块3—3)  (12分)

⑴有以下说法,其中正确的是        

A.在两分子间距离增大的过程中,分子间的作用力减小

B.布朗运动反映了花粉小颗粒内部分子的无规则运动

C.晶体一定具有规则形状,且有各向异性的特征

D.温度、压力、电磁作用等可以改变液晶的光学性质

⑵一定质量的理想气体从状态A(p1V1)开始做等压膨胀变化到

状态B(p1V2),状态变化如图中实线所示.此过程中气体对外做的功为  ▲ ,气体分

子的平均动能  ▲  (选填“增大”“减小”或“不变”), 气体(选填“吸收”或“放出”)

热量.

⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M

阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.

B.(选修模块3—4) (12分)

⑴下列说法正确的是   ▲  

A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。

B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调

C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。

D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆

  静止时的长度小

⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部

分。则图甲为  ▲  产生的干涉条纹(选填“黄光”或“蓝光”).若将两

种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色

光发生了全反射,则图乙对应的色光  ▲ (选填“一定”、“可能”或“不

可能”)发生全反射.

⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。

求:

①波的传播方向和周期;

②波的传播波速

C. (选修3-5试题) (12分)

⑴(4分)下列说法正确的是   ▲  

A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变

B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能

C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。

D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。

⑵(4分))现用下列几种能量的光子的光照射处于

  基态的氢原子,A:10.25eV、B:12.09eV、C:

12.45eV,则能被氢原子吸收的光子是  ▲ (填

序号),氢原子吸收该光子后可能产生 ▲ 

频率的光子.氢原子能级图为:

⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点

计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一

段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两

车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比mm

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中物理 来源:宿迁市2010年高三年级模拟试卷(二) 题型:简答题

 选做题(请从A、B和C三小题中选定两小题作答,并在答题纸上把所选题目对应字母后的方框涂满涂黑.如都作答则按A、B两小题评分)

A.(选修模块3—3)  (12分)

⑴有以下说法,其中正确的是        

A.在两分子间距离增大的过程中,分子间的作用力减小

B.布朗运动反映了花粉小颗粒内部分子的无规则运动

C.晶体一定具有规则形状,且有各向异性的特征

D.温度、压力、电磁作用等可以改变液晶的光学性质

⑵一定质量的理想气体从状态A(p1V1)开始做等压膨胀变化到

状态B(p1V2),状态变化如图中实线所示.此过程中气体对外做的功为  ▲ ,气体分

子的平均动能  ▲  (选填“增大”“减小”或“不变”), 气体(选填“吸收”或“放出”)

热量.

⑶已知地球的半径R,地球表面的重力加速度g,大气压强p0,空气的平均摩尔质量为M

阿伏加德罗常数NA.请结合所提供的物理量估算出地球周围大气层空气的分子数.

B.(选修模块3—4) (12分)

⑴下列说法正确的是   ▲  

A.泊松亮斑有力地支持了光的微粒说,杨氏干涉实验有力地支持了光的波动说。

B.从接收到的高频信号中还原出所携带的声音或图像信号的过程称为解调

C.当波源或者接受者相对于介质运动时,接受者会发现波的频率发生了变化,这种现象叫多普勒效应。

D.考虑相对论效应,一条沿自身长度方向运动的杆,其长度总比杆

   静止时的长度小

⑵如图所示,为黄光、蓝光分别通过同一干涉装置形成的干涉条纹中心部

分。则图甲为  ▲  产生的干涉条纹(选填“黄光”或“蓝光”).若将两

种颜色的光以同样的入射角入射到两种物质的介面上,图甲对应的色

光发生了全反射,则图乙对应的色光  ▲ (选填“一定”、“可能”或“不

可能”)发生全反射.

⑶图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.3s时刻的波形图,x=1.2m处的质点在t=0.3s时刻向y轴正方向运动。

求:

①波的传播方向和周期;

②波的传播波速

C. (选修3-5试题) (12分)

⑴(4分)下列说法正确的是   ▲  

A.原子核内部某个中子转变为质子和电子,产生的电子从原子核中发射出来,这就是β衰变

B.比结合能小的原子核结合成或分解成比结合能大的原子核时一定吸收核能

C.根据玻尔理论可知,氢原子辐射出一个光子后,氢原子的电势能增大,核外电子的运动速度减小。

D.德布罗意在爱因斯坦光子说的基础上提出物质波的概念,认为一切物体都具有波粒二象性。

⑵(4分))现用下列几种能量的光子的光照射处于

  基态的氢原子,A:10.25eV、B:12.09eV、C:

12.45eV,则能被氢原子吸收的光子是  ▲ (填

序号),氢原子吸收该光子后可能产生 ▲ 

频率的光子.氢原子能级图为:

⑶ (4分) 如图(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点

计时器的纸带,当甲车受到水平向右的瞬时冲量时,随即启动打点计时器,甲车运动一

段距离后,与静止的乙车发生正碰并粘在一起运动,纸带记录下碰撞前甲车和碰撞后两

车运动情况如图(b)所示,电源频率为50Hz,求:甲、乙两车的质量比mm

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

第Ⅰ卷(选择题 共31分)

一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.

1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]

A.安培首先发现了电流的磁效应

B.伽利略认为自由落体运动是速度随位移均匀变化的运动

C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

A.与门                  B.或门               C.或非门                  D.与非门

 


3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

A.灯L变亮                                    B.各个电表读数均变大

C.因为U1不变,所以P1不变                              D.P1变大,且始终有P1= P2

4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

A.在B点时,小球对圆轨道的压力为零

B.BC过程,小球做匀变速运动

C.在A点时,小球对圆轨道压力大于其重力

D.AB过程,小球水平方向的加速度先增加后减小

5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

A.若m2向下运动,则斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上运动,则轻绳的拉力一定大于m2g

二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2 周期为T2.已知万有引力常量为G,则根据题中给定条件

A.能求出木星的质量

B.能求出木星与卫星间的万有引力

C.能求出太阳与木星间的万有引力

D.可以断定

7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

A.OAB轨迹为半圆

B.小球运动至最低点A时速度最大,且沿水平方向

C.小球在整个运动过程中机械能守恒

D.小球在A点时受到的洛伦兹力与重力大小相等

8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

A.上述过程中,F做功大小为            

B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

C.其他条件不变的情况下,M越大,s越小

D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

A.在O1点粒子加速度方向向左

B.从O1O2过程粒子电势能一直增加

C.轴线上O1点右侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

 


第Ⅱ卷(非选择题 共89分)

三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

必做题

10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

(1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=  ▲  m/s2(保留两位有效数字).

 


11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

A.电流表G1(2mA  100Ω)             B.电流表G2(1mA  内阻未知)

C.电阻箱R1(0~999.9Ω)                      D.电阻箱R2(0~9999Ω)

E.滑动变阻器R3(0~10Ω  1A)         F.滑动变阻器R4(0~1000Ω  10mA)

G.定值电阻R0(800Ω  0.1A)               H.待测电池

I.导线、电键若干

(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

  ▲  Ω.

(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

 


12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

(1)下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修模块3-4)(12分)

(1)下列说法中正确的是  ▲ 

A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

C.太阳光是偏振光

D.为了有效地发射电磁波,应该采用长波发射

(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =” 或“<”).

(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

①求波在介质中的传播速度;

②求x=4m的质点在0.14s内运动的路程.

   C.(选修模块3-5)(12分)

(1)下列说法中正确的是  ▲ 

A.康普顿效应进一步证实了光的波动特性

B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

D.天然放射性元素衰变的快慢与化学、物理状态有关

(2)是不稳定的,能自发的发生衰变.

①完成衰变反应方程    ▲ 

衰变为,经过  ▲  α衰变,  ▲  β衰变.

(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

(1)氢气球受到的浮力为多大?

(2)绳断裂瞬间,氢气球加速度为多大?

(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

 


14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

      

15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

 


查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

第二部分  牛顿运动定律

第一讲 牛顿三定律

一、牛顿第一定律

1、定律。惯性的量度

2、观念意义,突破“初态困惑”

二、牛顿第二定律

1、定律

2、理解要点

a、矢量性

b、独立作用性:ΣF → a ,ΣFx → ax 

c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。

3、适用条件

a、宏观、低速

b、惯性系

对于非惯性系的定律修正——引入惯性力、参与受力分析

三、牛顿第三定律

1、定律

2、理解要点

a、同性质(但不同物体)

b、等时效(同增同减)

c、无条件(与运动状态、空间选择无关)

第二讲 牛顿定律的应用

一、牛顿第一、第二定律的应用

单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。

应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。

1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(      

A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动

B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力

C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点

D、工件在皮带上有可能不存在与皮带相对静止的状态

解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。

较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a →  ,则ΣFx   ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)

此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出

只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)

进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:

① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?

② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?

解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。

第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。

答案:0 ;g 。

二、牛顿第二定律的应用

应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。

在难度方面,“瞬时性”问题相对较大。

1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。

解说:受力分析 → 根据“矢量性”定合力方向  牛顿第二定律应用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)

进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)

进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。

解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。

分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则

θ=(90°+ α)- β= 90°-(β-α)                 (1)

对灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)两式得:ΣF = 

最后运用牛顿第二定律即可求小球加速度(即小车加速度)

答: 。

2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。

解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。

正交坐标的选择,视解题方便程度而定。

解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上两式成为

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ

解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。

根据独立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

显然,独立解T值是成功的。结果与解法一相同。

答案:mgsinθ + ma cosθ

思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)

学生活动:用正交分解法解本节第2题“进阶练习2”

进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。

解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。

答:208N 。

3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。

解说:第一步,阐明绳子弹力和弹簧弹力的区别。

(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?

结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。

第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。

知识点,牛顿第二定律的瞬时性。

答案:a = gsinθ ;a = gtgθ 。

应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?

解:略。

答:2g ;0 。

三、牛顿第二、第三定律的应用

要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。

在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。

对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。

补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。

1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?

解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。

答案:N = x 。

思考:如果水平面粗糙,结论又如何?

解:分两种情况,(1)能拉动;(2)不能拉动。

第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。

第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。

答:若棒仍能被拉动,结论不变。

若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -〈L-l〉〕。

应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?

解:略。

答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。

2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?

解说:

此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。

答案:F =  。

思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。

解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:

 = m2a

隔离m,仍有:T = m1a

解以上两式,可得:a = g

最后用整体法解F即可。

答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′=  。

3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?

解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。

法二,“新整体法”。

据Σ= m1 + m2 + m3 + … + mn ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的连接体

当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。

解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、

1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。

解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。

(学生活动)定型判断斜面的运动情况、滑块的运动情况。

位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。

(学生活动)这两个加速度矢量有什么关系?

沿斜面方向、垂直斜面方向建x 、y坐标,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔离滑块和斜面,受力图如图20所示。

对滑块,列y方向隔离方程,有:

mgcosθ- N = ma1y     ③

对斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(学生活动)思考:如何求a1的值?

解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = 求a1 。

答:a1 =  。

2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。

解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。

(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)

定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:

S1x + b = S cosθ                   ①

设全程时间为t ,则有:

S = at2                          ②

S1x = a1xt2                        ③

而隔离滑套,受力图如图23所示,显然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引进动力学在非惯性系中的修正式 Σ* = m (注:*为惯性力),此题极简单。过程如下——

以棒为参照,隔离滑套,分析受力,如图24所示。

注意,滑套相对棒的加速度a是沿棒向上的,故动力学方程为:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒为参照,滑套的相对位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二讲 配套例题选讲

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第三章的部分例题和习题。

查看答案和解析>>


同步练习册答案