A. | 交换律 | B. | 结合律 | C. | 分配律 | D. | 无法判断 |
分析 9.9×102,转化为:9.9×(100+2),运用乘法分配律简算.
解答 解:9.9×102
=9.9×(100+2)
=9.9×100+9.9×2
=990+19.8
=1009.8.
故选:C.
点评 此题考查的目的是理解掌握乘法分配律的意义及应用.
科目:小学数学 来源: 题型:计算题
$\frac{5}{6}$-$\frac{1}{2}$+$\frac{1}{3}$ | $\frac{9}{4}$-($\frac{1}{4}$+$\frac{1}{5}$) | $\frac{5}{7}$+$\frac{1}{4}$-$\frac{9}{14}$ |
$\frac{3}{5}$-($\frac{2}{15}$+$\frac{1}{3}$) | $\frac{1}{10}$+$\frac{3}{8}$-$\frac{2}{5}$ | $\frac{7}{8}$-($\frac{5}{12}$+$\frac{1}{6}$) |
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
1.29+3.7+0.71+6.3 | 25×33×4 | 400-(1300÷65+35) |
23.4-8.54-1.46 | 6.75+0.5-4.86 | 19×36-36×9 |
101×87 | (320+280)÷50×4 | (117+43)×(84÷7) |
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
$\frac{3}{4}$-$\frac{1}{2}$= | 20÷26= | $\frac{7}{8}$+$\frac{5}{8}$= | 2-$\frac{2}{3}$= |
$\frac{9}{10}$-$\frac{1}{10}$= | $\frac{3}{5}$+$\frac{1}{5}$= | 1-$\frac{3}{5}$= | $\frac{3}{10}$+$\frac{2}{5}$= |
1-$\frac{4}{9}$+$\frac{5}{9}$= | 1-$\frac{3}{4}$+$\frac{3}{4}$= |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com