精英家教网 > 小学数学 > 题目详情
甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为
75
75
厘米.
分析:根据题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,如图所示.

由图可知,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是5与6的最小公倍数的2倍,即5×6×2=60厘米,也就是它们按60厘米为周期循环出现,据此可以轻松求解.
解答:解:按60厘米为周期循环出现,在每一个周期中没有涂色的部分是,
1+3+5+4+2=15(厘米);
所以,在3米的木棍上没有涂黑色的部分长度总和是,
15×(300÷60)=75(厘米).
故答案为:75.
点评:此题主要考查最小公倍数问题,注意这里的周期是5与6最小公倍数的2倍,而不是5与6的最小公倍数.
练习册系列答案
相关习题

同步练习册答案