精英家教网 > 小学数学 > 题目详情
已知三个合数A,B,C两两互质,且A×B×C=1001×28×11,那么A+B+C的最小值为
222
222
分析:因为A×B×C=1001×28×11=2×2×7×7×11×11×13,一共有4个元,3个合数两两互质,所以不能共用一个元,例如一个合数有2,那么另一个2也必须归它,另外,四个元,分为3组,那么其中一组需要占用2个元.13单独为一组,不行,因为它不是合数了,所以13必须是2元组,又因为A+B+C的值最小,所以13和2×2为一组,即49,121,52这种分法最小,加起来222,据此即可解答.
解答:解:因为A×B×C
=1001×4×77
=2×2×7×7×11×11×13
=(2×2×13)×(7×7)×(11×11)
=52×49×121
所以A+B+C的值最小是:52+49+121=222.
答:最小是222.
故答案为:222.
点评:解答此题的关键是明确三个合数两两互质,则三个合数各占一个元才能满足条件,据此分析即可解答.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

已知a、b、c是三个不同的非零自然数,且a=b×c,那么下面说法错误的是(  )
 

查看答案和解析>>

科目:小学数学 来源: 题型:

已知三个合数A,B,C两两互质,且A×B×C=11011×28,那么A+B+C的最大值为
1626
1626

查看答案和解析>>

科目:小学数学 来源: 题型:单选题

已知a、b、c是三个不同的非零自然数,且a=b×c,那么下面说法错误的是


  1. A.
    a一定是b的倍数
  2. B.
    a一定是合数
  3. C.
    a一定是偶数

查看答案和解析>>

同步练习册答案