考点:乘方
专题:计算问题(巧算速算)
分析:把所求的式子的第一项与最后一项结合,第二项与倒数第二项结合,依次结合了50组,把结合后的偶次项提取-1,然后分别运用平方差公式变形,提取101后得到25个2相加,从而计算出结果.
解答:
解:1002-992+982-972+…+22-12
=(1002-12)-(992-22)+(982-32)-…+(522-492)-(512-502)
=(100+1)(100-1)-(99+2)(99-2)+(98+3)(98-3)-…+(52+49)(52-49)-(51+50)(51-50)
=101×99-101×97+101×95-…+101×3-101×1
=101×(99-97+95-…+3-1)
=101×(2+2+…+2)
=101×25×2
=5050.
故答案为:5050.
点评:此题考查了平方差公式的运用,技巧性比较强,要求学生多观察式子的特点,注意结合的方法,找到第一项与最后一项结合,第二项与倒数第二项结合,依此类推的结合方法是解本题的关键.