分析:根据求最大公约数和最小公倍数的方法,首先把每组中的数分解质因数,最大公约数是公有质因数的乘积;最小公倍数是公有质因数和各自质因数的连乘积;由此解答.
解答:解:①24和36,
24=2×2×2×3,
36=2×2×3×3;
24和36的最大公约数是:2×2×3=12;
24和36的最小公倍数是:2×2×3×2×3=72;
②120和50,
120=2×2×2×3×5,
50=2×5×5;
120和50的最大公约数是:2×5=10;
120和50的最小公倍数是:2×5×2×2×3×5=600;
③15、40和8,
15=3×5;40=2×2×2×5,8=2×2×2;
15、40和8的最小公倍是:2×2×2×5×3=120;
点评:此题主要考查求两个或3个数的最大公约数和最小公倍数的方法.