【题目】在一个棱长是20厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有m升水,水面恰好没过圆柱体的上底面,如果将容器倒置,那么圆柱体有8厘米露出水面。已知圆柱体的底面积是正方体底面积的,实心圆柱体的体积是多少?
【答案】650厘米3
【解析】
此题主要考查圆柱的体积计算,水所占的空间是一个底面为正方形的长方体,空白部分所占的空间也是一个底面为正方形的长方体,圆柱体的底面积是正方体底面积的,求出圆柱的底面积,再根据容器正放和倒放空白部分的体积相等,进而求此正放时空白部分的高是和和容器内圆柱的高;最后利用圆柱的体积公式v=sh,求出实心圆柱体的体积.
圆柱体底面积=20×20×=50(厘米2)
设实心柱体的高是h厘米
(20×20-50)h=(20×20-50)×(h-8)+20×20×(20-h)
h=13
50×13=650(厘米3)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com