精英家教网 > 小学数学 > 题目详情
一个直角三角形两条直角边分别是3厘米、5厘米,以直角边中的长边为轴和以短边为轴,将三角形旋转一周,都可以得到一个
圆锥
圆锥
体,它们的体积相差
31.4
31.4
立方厘米.
分析:根据点动成线,线动成面,面动成体,以这个以直角边中的长边为轴和以短边为轴旋转一周都可以得到一个圆锥,旋转轴不同,这个圆锥的高和底面半径也不同.以3厘米的直角边为轴旋转一周,得到一个高是3厘米,底面半径是5厘米的圆锥,以5厘米的直角边为轴旋转一周,得到一个高是5厘米,底面半径是3厘米的圆锥,根据圆锥的体积公式V=
1
3
πr2h,分别求出这两个圆锥的体积,二者相减即是它们的体积差.
解答:解:以直角边中的长边为轴和以短边为轴,将三角形旋转一周,都可以得到一个圆锥体;
1
3
×3.14×52×3-
1
3
×3.14×32×5,
=
1
3
×(3.14×25×3-3.14×9×5),
=
1
3
×(235.5-141.3),
=
1
3
×94.2,
=31.4(立方厘米);
答:它们的体积相差31.4立方厘米.
故答案为:圆锥,31.4.
点评:本题是考查图形的旋转、圆锥的特征及求圆锥体积.关键弄清分别以这个三角形的两条直角边为轴旋转得到的圆锥的高与底面半径.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:阅读理解

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=
625
625

(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是
17
17
.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小学数学 来源:数学教研室 题型:042

一个直三角形,两条直角边分别是4厘米和3厘米,直角所对的边是5厘米,那么直角所对边上的高是多少厘米?

查看答案和解析>>

科目:小学数学 来源: 题型:解答题

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=________.
(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是________.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=________. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是________厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是________厘米.

查看答案和解析>>

同步练习册答案