精英家教网 > 小学数学 > 题目详情
一串数1、4、7、10、…、397、400相乘,则所得的积的尾部零的个数为
34
34
分析:因为,乘积的尾部的每一个0,都是由一个2和一个5相乘得来的,所以,乘积的尾部有多少个0,关键看有多少个质因数2和5;显然,被2整除的数比被5整除的数多,即:质因数2的个数比质因数5的个数多,所以:有多少个质因数5,乘积的尾部就有多少个0;被5整除的数至少含有1个质因数5,由于这串数字从被5整除开始以后各数均是前一个数加3,所以在这串数中被5整除的相邻的两个数相差5×3=15,据此求出这串数字中含有的质因数是多少个即能求出积的尾部有多少个零.
解答:解:由于这串数字从被5整除开始以后各数均是前一个数加3,所以在这串数中被5整除的相邻的两个数相差 5×3=15;
则这样的数共有10,25,40,…400.共有(400-10)÷15+1=27个;
其中25,100,175,325,400含有两个因数5,250含有3个因数5(因为在27中已经各自计算过1个5,所以剩余5的个数为5+2=7个).
所以乘积尾部零的个数为27+5+2=34,
故答案为:34.
点评:明确有多少个质因数5,乘积的尾部就有多少个0是完成本题的关键.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

一串数1,4,7,10…100的规律是:第一个数为1,以后的每一个数都等于它前面的一个数加3,直到100止.将所有这些数相乘,所得积的尾部有
9
9
个连续的零.

查看答案和解析>>

科目:小学数学 来源: 题型:

一串数1、2、4、7、11、16、22、29…这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是
2
2

查看答案和解析>>

科目:小学数学 来源: 题型:

一串数1、1、1、2、2、3、4、5、7、9、12、16、21、…称为帕多瓦数列,请陈述这个数列的一个规律,并且写出其中的第14个数
28
28
和第18个数
86
86

查看答案和解析>>

科目:小学数学 来源:不详 题型:填空题

一串数1、2、4、7、11、16、22、29…这串数的组成规律,第2个数比第1个数多1;第3个数比第2个数多2;第4个数比第3个数多3;依此类推;那么这串数左起第1992个数除以5的余数是______.

查看答案和解析>>

同步练习册答案