精英家教网 > 小学数学 > 题目详情
在一根木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种刻度线将木棍分成12等份;第三种刻度线将木棍分成15等份.如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了,若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线,在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,所以我们应该按容斥原理的方法来解决此问题.
解答:解:10,12,15的最小公倍数是60,
设木棍60厘米,60÷10=6(厘米),60÷12=5(厘米),60÷15=4(厘米),
10等分的为第一种刻度线,共10-1=9(条),
12等分的为第二种刻度线,共12-1=11(条),
15等分的为第三种刻度线,过15-1=14(条),
第一种与第二种刻度线重合的条数:6和5的最小公倍数是30,60÷30-1=2-1=1(条),
第一种与第三种刻度线重合的条数:6和4的最小公倍数是12,60÷12-1=5-1=4(条),
第二种与第三种刻度线重合的条数:5和4的最小公倍数是20,60÷20-1=3-1=2(条),
三种刻度线重合的没有,6、5和4的最小公倍数是60,
因此,共有刻度线9+11+14-1-4-2=27(条),
木棍总共被锯成27+1=28(段);
答:木棍总共被锯成28段.
点评:解答此题的关键是,根据题意找出对应量,再根据容斥原理即可解答.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

在一根长棍上,有三种刻度线,第一种刻度线将木棍分成十等份,第二种刻度线将木棍分成十二等份,第三种刻度线将木棍分成十五等份.如果沿每条刻度线将木棍锯断,这木棍总共被锯成了
28
28
段.

查看答案和解析>>

科目:小学数学 来源:小考真题 题型:解答题

在一根木棍上,有三种刻度线,第一种刻度线将木棍分成10等份;第二种刻度线将木棍分成12等份;第三种刻度线将木棍分成15等份,如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?

查看答案和解析>>

同步练习册答案