分析 如图所示,
(1)由题意可知:当三角形ABP与长方形ABCD等底等高时,则S△ABP=$\frac{1}{2}$S长方形ABCD,此时三角形ABP的面积应最大,所以到达D点时面积最大,再用AD的长度除以点P的速度,就可以求出到达D点的时间.
(2)当点P离开点C时,面积就减小,所以保持面积最大的距离就是DC的长度,用DC的长度除以速度,就是保持面积最大需要的时间.
解答 解:(1)16÷2=8(秒);
答:P点从A 点出发经过8秒时△ABP面积最大.
(2)24÷2=12(秒),
答:△ABP面积最大共持续12秒.
点评 解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.且要明白:当三角形ABP与长方形ABCD等底等高时,三角形ABP的面积最大.
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com