精英家教网 > 小学数学 > 题目详情
对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加l.如此进行直到为l时操作停止.问:经过9次操作变为1的数有多少个?
分析:本题可以通过所给的变换规律,由易到难,确定操作可变为1的数组成斐波拉契数列,再根据所发现的规律求出经过9次操作变为l的数的个数.
解答:解:通过1次操作变为1的数有1个,即2;
经过2次操作变为1的数有2个,即4、1;
经过3次操作变为1的数有2个,即3、8;
…;
经过6次操作变为1的数有8个,即11、24、10、28、13、64、31、30;
经过1、2、3、4、5…次操作变为1的数依次为1、2、3、5、8…,这即为斐波拉契数列,
后面的数依次为:5+8=13,13+8=21,21+13=34,34+21=55.
即经过9次操作变为1的数有55个.
答:经过9次操作变为1的数有55个.
点评:题考查了数的奇偶性变化规律.关键是根据题意,由易到难寻找数的变化规律.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行,直到得数是1时停止.那么,经过9次操作变为1的数有
55
55
个.

查看答案和解析>>

科目:小学数学 来源: 题型:

对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3…,1998如此操作,最后得到的一位数是7的数一共有
222
222
个.

查看答案和解析>>

科目:小学数学 来源: 题型:

逆推找规律.对一个自然数做如下操作:如果是偶数则除以2;如果是奇数则加1,如此进行直到1,操作停止.求经过8次操作变成1的数有多少个?

查看答案和解析>>

科目:小学数学 来源: 题型:

对一个大于0的自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,那么经过9次操作变为1的数有(  )个.
A、15B、22C、25D、34

查看答案和解析>>

同步练习册答案