分析 首先根据x2+y2+1=2x+2y,推得(x-1)2+(y-1)2=1;然后根据x、y都为整数,分类讨论,分别求出x、y的值,再把它们求和,求出x+y的值是多少即可.
解答 解:因为x2+y2+1=2x+2y,
所以(x-1)2+(y-1)2=1,
因为x,y为整数,
所以$\left\{\begin{array}{l}{x-1=1}\\{y-1=0}\end{array}\right.$、$\left\{\begin{array}{l}{x-1=-1}\\{y-1=0}\end{array}\right.$、$\left\{\begin{array}{l}{x-1=0}\\{y-1=1}\end{array}\right.$或$\left\{\begin{array}{l}{x-1=0}\\{y-1=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$、$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$、$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
(1)$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$时,
x+y=2+1=3;
(2)$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$时,
x+y=0+1=1;
(3)$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$时,
x+y=1+2=3;
(4)$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$时,
x+y=1+0=1.
所以x+y的值是1或3.
点评 此题主要考查了用字母表示数的方法,要熟练掌握,解答此题的关键是判断出:(x-1)2+(y-1)2=1.
科目:小学数学 来源: 题型:解答题
口算: 50×6= | 300×7= | 48÷2= | 5+0= |
6×0= | 240÷8= | 71+39= | 63÷9= |
630÷9= | 96÷3= | 71-38= | 200÷4= |
600×9= | 5×800= | 70×8= | 30×6= |
900÷3= | 88÷4= | 62÷2= | 720÷9= |
35-3×8= | 32÷8-3= | 3×1×5= | 10÷2+5= |
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com