底面边长为40cm的正方形的长方体容器中,垂直插入底面为正方形、底边长是10cm的长方体木棒,这时水深80cm.当小棒提到离底面30cm处时,小棒提出水面部分的长度是________cm.
32
分析:由于长方体木棒被提出了30厘米,所以木棒在水里的体积减小了,那么水的高度也会下降,由此可得出:木棒提出30厘米的体积也就相当于下降了的水的体积,数量之间的相等关系式:木棒的底面积×30=木棒在水中时容器的底面积×水下降了的高度,进而求得水下降了的高度,再加上30即可.
解答:木棒提出30厘米的体积:10×10×30=3000(立方厘米),
木棒在水中时容器的底面积:40×40-10×10=1500(平方厘米),
水下降了的高度:3000÷1500=2(厘米),
木棒提出水面部分的长度:30+2=32(厘米);
答:小棒提出水面部分的长度是32厘米.
点评:解决此题关键是理解木棒提出30厘米的体积也就是水下降了的体积,进一步求出水下降了的高度,再加上30问题得解.