精英家教网 > 小学数学 > 题目详情
已知1×2×3×4×5×6×…×n的末尾有连续100个0,那么n最小是多少?
分析:5×2=10,提供一个0,在1、2、3、4、5…n,在这些正整数中以2为约数的数即偶数很多,但是以5为约数的数是有限的,只要提供一个约数5,即可得到一个0,如:5、10、15、20、
25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、…含一个约数5的可提供一个0,是一个以5为等差的等差数列,1×2×3×4×5×6×…×n的末尾有连续100个0,100×5=500,假设n=500;其中可提供两个约数5的则可提供两个0,如:25=5×5,25×4=100,这样的数是25的倍数,有:25、50、75、100、125、…是以25为等差的等差数列,到500有500÷25=20,则在500内多提供了20个0;其中可提供三个约数5的则可提供三个0,如125=5×5×5,125×8=1000,这样的数在500内有125、250、375三个数,又多提供3个0;则可以用500减去(20+3)个可以提供约数5的数字,400到500间提供一个5的约数(500-400)÷5=20,提供2个约数的数:(500-400)÷25=4,提供3个约数5的没有,所以,在400到500内只要有一个提供约数5的就可以了.那么n最小是405.
解答:解:5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、…含一个约数5的可提供一个0,是一个以5为等差的等差数列,1×2×3×4×5×6×…×n的末尾有连续100个0,100×5=500,假设n=500;
其中可提供两个约数5的则可提供两个0,如:25=5×5,25×4=100,这样的数是25的倍数,有:25、50、75、100、125、…是以25为等差的等差数列,到500有500÷25=20,则在500内多提供了20个0;
其中可提供三个约数5的则可提供三个0,如125=5×5×5,125×8=1000,这样的数在500内有125、250、375三个数,又在可提供两个约数5的基础上多提供3个0;
则可以用500减去(20+3)个可以提供约数5的数字;
400到500间提供一个5的约数(500-400)÷5=20,提供2个约数的数:(500-400)÷25=4,提供3个约数5的没有;
所以,在400到500内只要有一个提供约数5的就可以了.那么n最小是405.
点评:此题考查了乘除法中的巧算.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

如图,已知∠1=∠2,∠4=20°,∠3+∠4=90°,求∠2和∠3的度数.

查看答案和解析>>

科目:小学数学 来源: 题型:

把一张长方形纸折成如图的形状,已知∠1+∠2+∠3=220°,∠4=20°,求∠1、∠2、∠3、∠5各是多少度.

查看答案和解析>>

科目:小学数学 来源: 题型:

已知1+2+3+4+…+98+99=4950,如果把98前面的加号改为减号,其他的数字和符号都不变,答案应是
4754
4754

查看答案和解析>>

科目:小学数学 来源: 题型:


已知∠1=40°∠2=
50°
50°


已知∠1=40°∠3=∠4=
140°
140°


∠1=
60°
60°
;∠2=
60°
60°
;∠3=
60°
60°

查看答案和解析>>

同步练习册答案