分析 根据圆柱的表面积、体积公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,除非它们的底面积和高分别相等,体积才会相等,如果它们的底面积和高各不相等,体积就不一定相等;可以如果举例来证明,由此解答.
解答 解:比如,第一个圆柱体的底半径是r1=2,高是h1=10,
表面积S1=2×3.14×2×10+3.14×22×2
=12.56×10+12.56×2
=125.6+25.12
=150.7;
第二个圆柱的底半径是r2=4,高h2=2,
表面积S2=2×3.14×4×2+3.14×42×2
=25.12×2+3.14×16×2
=50.24+100.48
=150.72;
显然S1=S2;
V1=3.14×22×10
=3.14×4×10
=125.6;
V2=3.14×42×2
=3.14×16×2
=100.48;
但是V1≠V2;
所以表面积相等的两个圆柱,它们的体积也一定相等.此说法错误.
故答案为:×.
点评 此题主要根据圆柱的体积和表面积的计算方法进行判断,可以通过举例来证明,更有说服力.
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com