精英家教网 > 小学数学 > 题目详情

正方形的边长与它的面积


  1. A.
    成正比例
  2. B.
    成反比例
  3. C.
    不成比例
  4. D.
    无选项
C
分析:判断正方形的边长与它的面积之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.
解答:因为正方形的面积=边长×边长,
所以正方形的面积与边长的比值不一定;面积也不一定;
故正方形的边长与它的面积不成比例;
故选:C.
点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:阅读理解

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=
625
625

(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是
17
17
.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小学数学 来源: 题型:

(2005?阆中市)一个圆柱的侧面展开后是一个正方形,它的边长是18.84厘米,这个圆柱的底面半径是
3
3
厘米,高是
18.84
18.84
厘米,体积是
532.4184
532.4184
立方厘米.与它等底等高的圆锥体的体积是
177.4728
177.4728
立方厘米.

查看答案和解析>>

科目:小学数学 来源:海淀小学AB卷 五年级数学(下) 题型:042

有一块形状如下图的硬纸,你能否把它围成一个正方体?如果能,请用“上与下”、“前与后”、“左与右”标出各相对的面.如果每个正方形的边长都是1分米,请你算出围成正方体的体积是多少?

查看答案和解析>>

科目:小学数学 来源: 题型:解答题

阅读下列材料,并解决后面的问题.
★阅读材料:
我国是历史上较早发现并运用“勾股定理”的国家之一.我中古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.请运用“勾股定理”解决以下问题:

(1)如图一,分别以直角三角形的边为边长作正方形,其中s1=400,s2=225,则s3=________.
(2)如图二,是一个园柱形饮料罐,底面半径=8,高=15,顶面正中有一个小园孔,则一条直达底部的直吸管的最大长度是________.注:罐壁厚度和顶部园孔直径忽略不计.
(3)如图三,所示的直角三角形中,AB=6.则s1+s2的值=________. 注π值取3.
(4)如图四的圆柱,高=5厘米,底面半径=4厘米,在园柱底面A点有一只蚂蚁,它想吃到与A点相对的B点处的食物,需要爬行的路程是多少?小聪是这样思考的:
①将该园柱的侧面展开后得到一个长方形,如图五所示(A点的位置已经给出),请在图中中标出B点的位置并连接AB.
②小聪认为线段AB的长度是蚂蚁爬行的最短路程,那么蚂蚁爬行的最短路程是________厘米.注:π值取3.
(5)如图六,在长方形的底面A点有一只蚂蚁,想吃到上底面与A点相对的B点处的食物,它沿长方形表面爬行的最短路程是________厘米.

查看答案和解析>>

同步练习册答案