精英家教网 > 小学数学 > 题目详情
阅读下列材料,并回答问题:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5
,…
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
),
1
5×7
=
1
2
1
5
-
1
7
),…
(1)从计算结果中找出规律,利用规律性计算
1
2
+
1
6
+
1
12
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
=
9
10
9
10

(2)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=
50
101
50
101

(3)利用类似方法,求
1
1×4
+
1
4×7
+
1
7×10
+…+
1
19×22
的值.(写出解答过程)
分析:通过观察特例,算式中的每个分数都可以拆成两个分数相减的形式,然后通过加减相抵消的方法,解决为题;
解答:解:(1)
1
2
+
1
6
+
1
12
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
+
1
6
-
1
7
+
1
7
-
1
8
+
1
8
-
1
9
+
1
9
-
1
10

=1-
1
10

=
9
10


(2)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101

=
1
2
×(1-
1
3
)+
1
2
×(
1
3
-
1
5
)+
1
2
×(
1
5
-
1
7
)+…+
1
2
×(
1
99
-
1
101
),
=
1
2
×(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+
1
99
-
1
101
),
=
1
2
×(1-
1
101
),
=
1
2
×
100
101

=
50
101


(3)
1
1×4
+
1
4×7
+
1
7×10
+…+
1
19×22

=
1
3
×(1-
1
4
)+
1
3
×(
1
4
-
1
7
)+…+
1
3
×(
1
19
-
1
22
),
=
1
3
×(1-
1
4
+
1
4
-
1
7
+…+
1
19
-
1
22
),
=
1
3
×(1-
1
22
),
=
1
3
×
21
22

=
7
22

故答案为:
9
10
50
101
点评:解答此题,应认真观察给出的特例,通过分数的拆分,达到简算的目的.
练习册系列答案
相关习题

同步练习册答案