精英家教网 > 小学数学 > 题目详情
下列图形中不能够密铺的图形是(  )
分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.
解答:解:A、正六边形的每个内角是120°,能整除360°,能密铺;
B、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;
C、正三角形的每个内角是60°,能整除360°,能密铺.
故选:B.
点评:本题考查了平面镶嵌(密铺),用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
练习册系列答案
相关习题

同步练习册答案